En clair : Si la borne inférieure et la borne supérieure sont négatives, la valeur nulle ou « 0 » n'est pas incluse dans l'intervalle, alors les deux moyennes sont significativement différentes et la moyenne du sondage 2 est supérieure à celle du sondage 1.
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
Test unilatéral : test statistique pour lequel on prend comme hypothèse alternative l'existence d'une différence dont le sens est connu. Test bilatérale : test statistique pour lequel on prend, comme hypothèse alternative, l'existence d'une différence, dans un sens ou l'autre.
Pour déterminer si des différences entre les moyennes sont statistiquement significatives, comparez la valeur de p du terme à votre seuil de signification pour évaluer l'hypothèse nulle. L'hypothèse nulle veut que les moyennes de population soient toutes égales.
Paramétrer un test de Student pour la comparaison d'une moyenne à une valeur. Allez au menu Test parametriques et sélectionnez l'option Test t et z pour un échantillon. Dans la boîte de dialogue, renseignez le champ Données en sélectionnant la colonne B contenant la « moyenne de math » des étudiants.
Si la valeur-p est suffisamment faible, les scientifiques partent de l'idée que l'effet est bien réel. Lorsqu'elle se situe au-dessous d'un seuil fixé à 5% (p < 0,05), ils parlent de «résultats statistiquement significatifs».
L'idée. Si on souhaite comparer deux échantillons (i.i.d) gaussiens, il nous suffit en fait de comparer leurs paramètres : leur moyenne μ1 et μ2, et leur variance σ21 et σ22. La méthodologie la plus classique est d'effectuer de manière séquentielle : Un test d'égalité des variances.
Pour cela, il suffit de regarder le "t-stat" (t) ou bien la P-value (P>?t?), et comparer ces valeurs à des "valeurs seuils". Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.
Définition. Différence entre deux statistiques dont on peut affirmer, avec moins de x chances sur 100 de se tromper, qu'elle n'est pas due au hasard seul. Exemple : différence significative à P = 0,01. Dans ce cas, la probabilité de se tromper en affirmant que la différence est significative n'est que de 1 %.
La significativité d'un coefficient est testée à partir du t de Student. On teste l'hypothèse d'un coefficient nul contre l'hypothèse alternative d'un coefficient différent de zéro (positif ou négatif, le test étant bilatéral). Un coefficient sera significatif si la probabilité est inférieure au seuil de 5%.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le Test de Wilcoxon est un test de comparaison de deux séries d'une même variable quantitative (même unité de mesure). C'est un Test non paramétrique, utilisé quand les conditions de normalité de la variable ne sont pas valides.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Le test de Student fait intervenir une statistique de test suivant une loi de Student : un type de loi de probabilité faisant intervenir la loi normale centrée réduite. Le test de Student permet de déterminer la probabilité que deux groupes de données soient différents.
Afin de déterminer si un échantillon est représentatif d'une population, on calcule l'intervalle I de fluctuation au seuil de 95% ainsi que la fréquence f dans l'échantillon. Si f \in I, alors l'échantillon est représentatif de la population.
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
Des recherches récentes montrent qu'un test statistiquement significatif ne correspond à une évidence forte que pour une valeur p de 0,5 % ou même 0,1 %.
Un test est dit statistiquement significatif lorsque le risque quantifié de se tromper, nommé p-valeur, est inférieur à un niveau de signification alpha. Pour être plus précis, la valeur-p est la probabilité d'obtenir une donnée aussi extrême sous l'hypothèse nulle.
Qu'est-ce que la significativité statistique ? La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Pour ce faire, on va utiliser la fonction recherche V, on va mettre « = Recherche V », on va double-cliquer dessus. On va mettre la valeur recherchée, donc ici, la case A2 pour la colonne H on va mettre « ; » on va sélectionner la colonne H, on va verrouiller les repères avec F4.
Sous l'onglet Accueil , dans le groupe Styles , cliquez sur Mise en forme conditionnelle, puis sur Nouvelle règle. Dans la liste Style , choisissez Classique, puis dans la liste Mettre en forme uniquement les valeurs classées en haut ou en bas , choisissez Mettre en forme uniquement les valeurs uniques ou dupliquées.
1- Comparaison de deux colonnes identiques
La première étape est d'indiquer « =EXACT », puis d'indiquer la première donnée que nous souhaitons vérifier, suivie d'un point-virgule, puis la seconde donnée que nous souhaitons vérifier, celle qui se trouve dans la deuxième colonne.