Test de Levene (homogénéité des variances) : Pour chaque variable dépendante, une analyse de variance est réalisée sur les écarts absolus des valeurs aux moyennes des groupes respectifs. Si le test de Levene est statistiquement significatif, l'hypothèse d'homogénéité des variances doit être rejetée.
Si la valeur p résultante du test de Levene est inférieure à un niveau de signification (typiquement 0,05), il est peu probable que les différences obtenues dans les variances d'échantillon se soient produites sur la base d'un échantillonnage aléatoire d'une population à variances égales.
Comment tester l'égalité des variances ? Le test de Student indépendant classique suppose l'homogénéité des variances des deux groupes à comparer. Si les deux échantillons suivent une loi normale, le test F peut être utilisé pour comparer les variances.
La théorie relative aux tests d'hypothèses est basée sur le fait que le niveau du test est un choix de l'utilisateur et généralement les valeurs utilisées sont 10%, 5% ou 1% selon l'importance de cette erreur dans le contexte particulier du problème.
dl = (c − 1)(l − 1).
Pour vérifier qu'une équation est bien homogène, il faut s'assurer que les deux parties de l'équation utilisent la même dimension. En effet, si ces dernières sont différentes, votre équation sera automatiquement considérée fausse. On appelle cela une analyse dimensionnelle.
Les tests d'homogénéité permettent de décider si plusieurs sous-populations sont homogènes par rapport à un critère donné.
Un test est dit statistiquement significatif lorsque le risque quantifié de se tromper, nommé p-valeur, est inférieur à un niveau de signification alpha. Pour être plus précis, la valeur-p est la probabilité d'obtenir une donnée aussi extrême sous l'hypothèse nulle.
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
S'il génère une valeur p inférieure ou égale au niveau de signification, le résultat est considéré comme statistiquement significatif (et permet de rejeter l'hypothèse nulle). Cela est généralement écrit sous la forme suivante : p≤0,05.
Les tests de l'homogénéité des variances permettent de vérifier si les variances des échantillons à observer ne sont pas très différentes.
Il s'agit de comparer une moyenne observée à une moyenne théorique (μ). Si la valeur absolue de t (|t|) est supérieure à la valeur critique, alors la différence est significative. Dans le cas contraire, elle, ne l'est pas.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Une hypothèse importante dans l'analyse de la variance (ANOVA et le test-t pour les différences de moyennes) est que les variances dans les différents groupes sont égales (homogènes).
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.
Dans le domaine de la statistique, un résultat est dit significatif s'il est improbable qu'il se soit produit par hasard.
Pour tester la significativité du modèle, nous avons 2 niveaux : Un test global, obtenu grâce à une statistique de Fisher. En pratique, l'hypothèse Ho de ce test est souvent rejetée, le modèle est donc souvent significatif globalement. Un test de significativité sur chacune des variables explicatives prises une à une.
1. Qui exprime quelque chose nettement, sans ambiguïté : Choisir quelques exemples significatifs pour appuyer une explication. 2. Qui est lourd de sens, à quoi on attribue facilement telle interprétation, qui renseigne sur quelque aspect : Les résultats du sondage sont significatifs.
Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.
Une valeur-p de 0,05 signifie qu'il y a une chance sur 20 qu'une hypothèse correcte soit rejetée plusieurs fois lors d'une multitude de tests (et n'indique pas, comme on le croit souvent, que la probabilité d'erreur sur un test unique est de 5 %).
1. Dont la composition et la structure sont les mêmes en tout point : Un alliage homogène. 2. Dont les éléments présentent une grande harmonie entre eux : Une équipe homogène.
] = [uR] [i] [i][t] [uC] = [t] = T Par conséquent, la constante τ est homogène à un temps. Les deux membres ont la même dimension. LГéquation est donc homogène. L3T-2M-1M = T Cette formule est bien homogène à un temps.
Une équation est homogène lorsque ses deux membres ont la même dimension. Le critère de pertinence s'énonce ainsi : Une expression non homogène est nécessairement fausse.