Définition : Soit a et b deux nombres réels. Toute fonction f définie sur R par f(x) =
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
Définition : Une fonction affine est une fonction qui peut s'écrire sous la forme : f:x ↦ ax + b, où a et b sont deux nombres réels quelconques. Remarque : toute fonction linéaire est une fonction affine telle que b = 0. La fonction f :x ↦ 3x² + 7 n'est pas une fonction affine.
a et b désignent deux nombres réels fixés. Une fonction affine f est une fonction définie sur R par la relation f ( x ) = a x + b f(x)=ax+b f(x)=ax+b.
Si b = 0, f(x) = ax, f est une fonction linéaire et la représentation graphique est une droite passant par l'origine O. Si a = 0, f(x) = b, f est constante et la droite est parallèle à l'axe des abscisses.
Une fonction affine de coefficient directeur et d'ordonnée à l'origine est la fonction qui a un nombre associe la somme du produit de par et de . Le nombre est le coefficient directeur de la fonction affine.
La non-linéarité est la particularité, en mathématiques, de systèmes dont le comportement n'est pas linéaire, c'est-à-dire soit ne satisfaisant pas le principe de superposition, soit dont la sortie n'est pas proportionnelle à l'entrée.
Une fonction linéaire est une fonction « f » qui peut s'écrire sous la forme f (x)=ax où « a » est un nombre connu. « a » est le coefficient directeur de la fonction linéaire f . Exemples : a) g(x)=3 x , g est une fonction linéaire de coefficient directeur 3.
Soit la fonction f, définie par f(x) = 2x - 3. f(x) est bien de la forme ax + b, avec a = 2 et b = -3 : c'est donc bien une fonction affine. On va chercher à tracer la droite d'équation y = 2x - 3. Puisqu'il s'agit d'une droite, il suffit de ne trouver que deux points pour la tracer.
Fonctions linéaires et affines. Une fonction linéaire est une fonction de la forme f : x ax où a est un nombre réel appelé coefficient de la fonction linéaire ou coefficient de proportionnalité.
Se dit d'une fonction du premier degré à une variable, qui correspond au produit de cette variable par un nombre réel auquel est ajouté un autre nombre réel et qui s'écrit f(x) = ax + b. Une fonction affine est représentée par une droite. Une fonction linéaire est une fonction affine.
Re : Fonction affine non linéaire
Les fonctions linéaires sont de la forme f(x) = ax. Les fonctions affines de la forme f(x) = ax + b. Donc si b =/=0 la fonction affine n'est pas linéaire.
La représentation graphique d'une fonction linéaire f : x → ax est une droite passant par l'origine et d'équation y = ax. Définition : a est le coefficient directeur de la droite d.
La représentation d'une fonction affine est une droite. Il suffit donc de déterminer les images de deux nombres distincts, de placer les points correspondants et de tracer la droite passant par ces points.
Pour toute fonction linéaire f, la représentation graphique de f est une droite qui passe par l'origine du repère. Inversement, pour toute droite d qui passe par l'origine du repère et qui n'est pas l'axe des ordonnées, d est la représentation graphique d'une fonction linéaire.
Définition et notations de fonctions affines
Soit a et b deux nombres fixés. En associant à chaque nombre "x" un nombre "ax + b" appelé image de x, on définit une fonction affine f. On notera cette fonction f : x → ax + b . L'image de x sera notée f(x) .
- La deuxième ligne du tableau indique, pour chaque intervalle de l'ensemble de définition, les variations de la fonction. Une flèche descendante signifie que la fonction est décroissante tandis qu'une flèche montante indique qu'elle est croissante.
Pour toute fonction linéaire f, la représentation graphique de f est une droite qui passe par l'origine du repère. Inversement, pour toute droite d qui passe par l'origine du repère et qui n'est pas l'axe des ordonnées, d est la représentation graphique d'une fonction linéaire.
Pour que vous puissiez suivre plus facilement les explications, prenons la représentation graphique d'une première fonction f : Comme cette représentation graphique est une droite non parallèle à l'axe des ordonnées, la fonction f est affine donc de la forme f(x) = ax+b d'après la définition des fonctions affines.
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.