Comment savoir si une fonction est intégrable ou pas ?

Interrogée par: Jérôme de la De Oliveira  |  Dernière mise à jour: 12. Dezember 2024
Notation: 4.8 sur 5 (43 évaluations)

Soit f, une fonction intégrable sur I. Si f est une fonction à valeurs réelles, alors f + et f − sont intégrables sur I. Si f est une fonction à valeurs complexes, alors Re(f ) et Im(f ) sont intégrables sur I.

Comment montrer que F intégrable ?

On dit que f est intégrable sur I ou que ∫If ∫ I f est absolument convergente si ∫I|f| ∫ I | f | converge. Théorème : Si f est intégrable sur I , alors ∫If(t)dt ∫ I f ( t ) d t converge. Si ∫If(t)dt ∫ I f ( t ) d t converge sans que f ne soit intégrable sur I , alors on parle d'intégrale semi-convergente.

Est-ce qu'une fonction continue est intégrable ?

Critères d'intégrabilité

Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.

Comment montrer qu'une fonction est intégrable au sens de Lebesgue ?

Si f est Riemann- intégrable sur [a, b], alors f est Lebesgue-intégrable sur [a, b], et les deux intégrales sont égales. f(x) = { 1 si x ∈ Q, 0 sinon. Cette fonction est nulle presque partout, donc elle est intégrable d'intégrale nulle au sens de Lebesgue.

Comment montrer qu'une fonction définie par intégrale est bien définie ?

1. pour tout x ∈ I, la fonction t ↦→ f(x, t) est continue par morceaux sur J ; 2. pour tout t ∈ J, la fonction x ↦→ f(x, t) est continue sur I ; 3. il existe une fonction ϕ positive, continue par morceaux et intégrable sur J telle que: ∀(x, t) ∈ I × J,|f(x, t)| ≤ ϕ(t).

TABLEAU ÉLECTRIQUE : LES 3 ERREURS À NE JAMAIS FAIRE

Trouvé 21 questions connexes

Comment montrer qu'une fonction définie par intégrale est de classe C1 ?

En terme de différentielle, on a la caractérisation suivante : Proposition : Soit f une fonction définie sur un ouvert U de Rn. R n . f est de classe C1 sur U si et seulement si f est différentiable sur U et si l'application x↦dfx x ↦ d f x est continue.

Comment faire l'intégrale d'une fonction ?

La principale méthode pour calculer une intégrale passe par la notion de primitive d'une fonction. La « primitivation » est l'opération qui, à partir d'une fonction f, donne une fonction F dérivable et dont la dérivée est égale à f : F′(x) = f(x).

Comment déterminer le sens d'une fonction ?

➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction. Si la dérivée est positive sur un intervalle, alors la fonction est croissante sur cet intervalle. Si la dérivée est négative, la fonction est décroissante.

Quand Dit-on qu'une fonction est intégrable au sens de Riemann ?

est Riemann-intégrable si et seulement si l'ensemble de ses points de discontinuité a une mesure de Lebesgue nulle. L'ensemble des discontinuités peut être de mesure nulle sans être fini ou dénombrable, comme pour la fonction caractéristique de l'ensemble de Cantor, qui n'est donc pas réglée.

Comment montrer que l'intégrale est derivable ?

Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .

Quelles sont les fonctions intégrables ?

Définition : Une fonction localement intégrable sur est une fonction intégrable sur tout intervalle fermé borné contenu dans . Par exemple si I = [ a , + ∞ [ cela signifie que, pour tout , l'intégrale existe ∫ a x f ( t ) d t , ou encore que la fonction F : x ↦ ∫ a x f ( t ) d t est définie sur l'intervalle .

Comment expliquer qu'une fonction est continue ?

Définition : Soit une fonction f définie sur un intervalle I. On dit que f est continue sur I si on peut tracer la courbe représentative de f sur I "sans lever le crayon". Propriétés : 1) Les fonctions x ! xn (n ∈N ) et plus généralement les fonctions polynômes sont continues sur R .

Comment étudier la continuité de f en 0 ?

Par exemple, étudions la continuité de 𝑓 ( 𝑥 ) = | 𝑥 | en 𝑥 = 𝑎 . Premièrement, nous savons que si 𝑓 ( 0 ) = | 0 | = 0 , alors 𝑥 = 0 appartient à l'ensemble de définition de 𝑓 . Deuxièmement, nous devons déterminer l i m  →  | 𝑥 | .

Comment savoir si une intégrale est croissante ?

Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.

Comment reconnaître une intégrale de Riemann ?

Définition : Soit f une fonction bornée sur [a,b] . Alors f est Riemann intégrable si et seulement l'une des conditions équivalentes suivante est vérifiée : S−(f)=supσS−(f,σ) S − ( f ) = sup σ S − ( f , σ ) et S+(f)=infσS+(f,σ) S + ( f ) = inf σ S + ( f , σ ) sont égales.

Quelle est la dérivée de 0 ?

Sa dérivée est toujours positive (ou nulle pour x = 0).

Comment donner le sens de variation d'une fonction f ?

2) Sens de variation et signe de la dérivée

f est croissante sur I si et seulement si pour tout x de I, f ′(x) est positive ou nulle. f est décroissante sur I si et seulement si pour tout x de I, f ′(x) est négative ou nulle. f est constante sur I si et seulement si pour tout x de I, f ′(x) = 0.

Comment Etudier le sens de variation de f ?

Pour étudier le sens de variation d'une fonction f dérivable sur un intervalle [a ; b], il faut :
  1. Calculer sa dérivée f '(x).
  2. Déterminer le signe de f '(x) sur [a ; b] ; appliquer le théorème suivant : • lorsque la fonction dérivée f ' est positive sur un intervalle I, la fonction f. ...
  3. Dresser le tableau de variation de f.

Quel est l'intégrale de 0 ?

Intégrale et primitives

L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.

Quelle est la différence entre une primitive et une intégrale ?

La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).

Pourquoi l'intégrale est une somme ?

Pour conceptualiser l'intégrale, il faut imaginer que tu resserres de plus en plus l'espace vide qui subsiste entre ces points (en en rajoutant plein), jusqu'à ce que tu passes d'un point à un autre sans voir la différence. L'intégrale est en fait une somme qui se calcule généralement sur un ensemble infini.

Est-ce que toute fonction continue est dérivable ?

Dérivabilité et continuité

La dérivabilité d'une fonction ne se cherche donc qu'en des points où la fonction est déjà continue. La réciproque de cette affirmation est fausse : il existe des fonctions continues en a mais non dérivables en ce point.

Est-ce que l'intégrale d'une fonction positive est positive ?

Propriété de positivité

En d'autre termes, l'intégrale d'une fonction positive sur un intervalle est positive, ce qui est logique dans la mesure où elle s'interprète comme une aire (voir le début du cours).

Comment justifier qu'une fonction est c1 ?

Une fonction numérique f dГune variable réelle définie sur un intervalle I est dite de classe 1 C si elle est dérivable sur cet intervalle et si sa dérivée 'f est continue sur cet intervalle. a) Si f et g sont deux fonctions de classe 1 C sur un intervalle I alors les fonctions f g et f g sont de classe 1 C sur I .

Comment savoir si une fonction est dérivable sur un intervalle ?

f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I.

Article précédent
C'est quoi un encadrement décimal ?