Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
f est une fonction affine si et seulement si pour tous réels distincts a et b, le rapport \dfrac{f(b)-f(a)}{b-a} est constant. Logique Cette propriété caractérise les fonctions affines. Notation Le nombre \dfrac{f(b)-f(a)}{b-a} est le taux d'accroissement de f entre a et b.
On rappelle qu'une fonction affine f est représentée par une droite et admet une expression de la forme f\left(x\right)=ax+b. f est une fonction affine, elle a une expression de la forme f\left(x\right) = ax+b, avec : a le coefficient directeur de la droite. b l'ordonnée à l'origine.
Proposition 2.1.2. Soit O ∈ E un point fixé, alors f : E → F est affine si et seulement si l'application φ : −→ E → −→ F défini par φ( −−→ OM) = −−−−−−−→ f(O)f(M) est linéaire. linéaire, alors l'application f : E → F définie par : f(M) = O/ + φ( −−→ OM) .
Une fonction est affine si elle peut s'écrire sous la forme f(x) = ax + b, où a et b sont des nombres réels. Si b = 0, alors f est une fonction linéaire. Si a = 0, alors f est une fonction constante. La représentation graphique d'une fonction affine est une droite.
Une fonction affine f f f est une fonction définie sur R \mathbb{R} R par la relation f ( x ) = a x + b f(x)=ax+b f(x)=ax+b. La représentation graphique de la fonction affine f : x → a x + b f:x→ax+b f:x→ax+b est une droite ( d ) (d) (d).
Une fonction affine se représente toujours par une droite mais contrairement aux fonctions linéaires elle ne passe pas par l'origine. Reciproquement si une fonction est représentée par une droite qui ne passe pas par l'origine alors on peut en conclure qu'il s'agit d'une fonction afine.
Une fonction affine est une fonction dont le graphique est une droite. Par conséquent, le graphique d'une fonction non affine n'est pas une droite. Un exemple de fonction non affine serait quelque chose comme 𝑦 est égal à 𝑥 au cube ou 𝑦 est égal à 𝑒 à la puissance 𝑥.
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .
Propriété Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
Une fonction linéaire est une fonction affine particulière. En effet, f : x → ax peut s'écrire f : x → ax + 0 . f : x → ax + b est une fonction affine, g : x → ax est la fonction linéaire associée à f.
La fonction peut donc être définie par 𝑓 ( 𝑥 ) = 2 𝑥 + 4 (notation fonctionnelle) ou 𝑓 ∶ 𝑥 ⟶ 2 𝑥 + 4 (notation par flèche). Cela signifie que l'on peut déterminer si 𝑓 définit une fonction en traçant la représentation graphique de 𝑦 = 𝑓 ( 𝑥 ) et en effectuant le test de la droite verticale.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Une fonction linéaire est définie de la manière suivante : où le nombre a est un réel quelconque. Ce réel a s'appelle le coefficient de proportionnalité. Il suffit donc d'une valeur x non nulle et de son image y pour déterminer la valeur du coefficient de proportionnalité.
Une fonction ne peut posséder qu'une seule ordonnée à l'origine. Il peut parfois ne pas y en avoir, mais il ne peut jamais y en avoir plusieurs.
La représentation d'une fonction affine est une droite. Il suffit donc de déterminer les images de deux nombres distincts, de placer les points correspondants et de tracer la droite passant par ces points.
Une fonction affine peut être décrite par : f : R → R → + La droite correspondant à une fonction affinene passe pas par ne passe pas par ne passe pas par l'origine l'origine l'origine. ety sont reliés par la relation y = a +. C'est l'équation de la droite l'équation de la droite l'équation de la droite.
Soient x1 et x2 deux nombres quelconques (x1 x2). L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés.
Tout d'abord une fonction linéaire a pour équation y = ax alors qu'une affine est y = ax + b. Une fonction linéaire est donc un cas particulier d'une affine, en prenant b = 0. Graphiquement, la droite linéaire passe par l'origine contrairement à l'affine. Ce qui suit est donc valable pour les deux types de fonctions.
La fonction linéaire ou affine est croissante si son coefficient directeur est positif, décroissante s'il est négatif et constante s'il est nul (la fonction est alors égale à un nombre et son expression ne comprend pas de x .
* Si une fonction est affine, alors sa représentation graphique est une droite (qui n'est pas parallèle à l'axe des ordonnées). * Réciproquement, si la représentation graphique d'une fonction est une droite (qui n'est pas parallèle à l'axe des ordonnées), alors cette fonction est affine.
Une fonction affine f est une fonction dont la forme algébrique s'écrit f(x) = ax+b et qui est donc déterminée par les deux nombres a et b. Le nombre a est le coefficient directeur et le nombre b est l'ordonnée à l'origine. Ce vocabulaire est lié à la représentation graphique d'une fonction affine qui est une droite.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
La non-linéarité est une propriété utilisée pour décrire une relation qui n'est pas linéaire. Ce terme décrit une fonction qui ne peut être représentée par une ligne droite sur un graphique, mais qui a plutôt une forme courbe ou angulaire.