Algèbre Exemples Réécrivez 169 comme 132 . Extrayez les termes de sous le radical, en supposant qu'il s'agit de nombres réels positifs. Multipliez −1 par 13 .
racine carrée de 169 =
= 13.
Pour simplifier une racine carrée, on recherche des facteurs carrés parmi les diviseurs du nombre sous la racine. Par exemple, la racine carrée de 48 peut être simplifiée en séparant les facteurs carrés : √(16 × 3) = √16 × √3 = 4√3.
Réécrivez 150 comme 52⋅6 5 2 ⋅ 6 . Factorisez 25 25 à partir de 150 150 . Réécrivez 25 25 comme 52 5 2 . Extrayez les termes de sous le radical.
√72 = √(9 x 8) = √(3 x 3 x 8) = 3√8. Essayez toujours de voir si 9 ne serait pas un des facteurs.
Pour simplifier une fraction avec une racine carrée, nous pouvons multiplier le numérateur et le dénominateur par la conjuguée du dénominateur. Cela convertit le dénominateur en un nombre rationnel puisque ( a − b ) ( a + b ) = a − b , en vertu de la troisième identité remarquable.
Pour faire disparaitre une racine carrée d'un dénominateur, il suffit de multiplier la fraction au numérateur et dénominateur par cette même racine carrée.
Réécrivez 500 comme 102⋅5 10 2 ⋅ 5 . Factorisez 100 100 à partir de 500 500 . Réécrivez 100 100 comme 102 10 2 . Extrayez les termes de sous le radical.
Il est exact que √200 = 5√8 !
Algèbre Exemples
Factorisez 16 16 à partir de 80 80 . Réécrivez 16 16 comme 42 4 2 . Extrayez les termes de sous le radical. Le résultat peut être affiché en différentes formes.
Réécrivez 288 comme 122⋅2 12 2 ⋅ 2 . Factorisez 144 144 à partir de 288 288 . Réécrivez 144 144 comme 122 12 2 . Extrayez les termes de sous le radical.
Réécrivez 18 comme 32⋅2 3 2 ⋅ 2 . Factorisez 9 9 à partir de 18 18 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
Simplifier la racine carrée du discriminant
Donc 32 = 16 × 2 = 16 × 2 = 4 2 \sqrt{32}=\sqrt{16\times 2}=\sqrt{16}\times\sqrt{2}=4\sqrt{2} 32 =16×2 =16 ×2 =42 .
Ensuite, vous utilisez une formule simple : R = A + (X-A²)/2/A, ou R = B - (X-B²)/2/B, selon la proximité du carré. Exemple 1 : racine de 11. Je prends A² = 9, 11 étant plus proche de 9 que de 16, A = 3. R(11) = A + (X-A²)/2/A = 3 + (11–9)/2/3 = 3 + 1/3 = 3,333 , pour une vraie valeur de 3,317.
Détermine la règle de la fonction racine carrée ci-dessous. La règle de la fonction racine carrée est f(x)=2√−(x+1)−3.
Réécrivez 147 comme 72⋅3 7 2 ⋅ 3 . Factorisez 49 49 à partir de 147 147 . Réécrivez 49 49 comme 72 7 2 . Extrayez les termes de sous le radical.
Puisqu'on sait que 20 = 4×5 et que √(4×5) = √4×√5, on préférera "simplifier" en écrivant 2√5 à la place de √20.
Exemples : • 3 = 9 donc √9 = 3 • 2,6 = 6,76 donc √6,76 = 2,6 • √2 ≈ 1,4142 • √3 ≈ 1,732 √2 et √3 s'écrivent avec un nombre infini de décimales, on les appelle des nombres irrationnels.
Réécrivez 108 comme 62⋅3 6 2 ⋅ 3 . Factorisez 36 36 à partir de 108 108 . Réécrivez 36 36 comme 62 6 2 . Extrayez les termes de sous le radical.
Réécrivez 45 comme 32⋅5 3 2 ⋅ 5 . Factorisez 9 9 à partir de 45 45 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
La racine carrée de 25 est 5, car 5 x 5 = 25. La racine carrée de 36 est 6, car 6 x 6 = 36.
On convient d'appeler l'opposé de la racine carrée de a la racine carrée négative de a. La racine carrée négative de a est notée – a. Ex. : La racine carrée négative de 36, notée – 36, est –6.
Une obtention de décimales par la méthode de Newton a été illustrée en 1922, concluant que √7 vaut 2,646 « au millième près ».
Les méthodes d'élimination des racines comprennent
Cette méthode consiste à creuser une tranchée sur toute la circonférence de l'arbre, puis à couper toutes les branches et à sectionner le tronc.