Pour tracer une droite dont on connaît une équation, on détermine d'abord les coordonnées de deux points appartenant à la droite. Pour cela, on remplace successivement x dans l'équation de la droite par deux valeurs x_1 et x_2, et on calcule les ordonnées correspondantes y_1 et y_2.
On place l'ordonnée à l'origine (qui correspond à la valeur du paramètre b ) dans le plan cartésien. À partir de l'ordonnée à l'origine, on place un autre point en utilisant la pente de la droite (qui correspond à la valeur du paramètre a ). On trace la droite qui passe par ces 2 points.
Pour tracer une droite, il suffit de deux points. On sait déjà que le point de coordonnées appartient à la droite. Pour déterminer un autre point de la droite, on utilise le coefficient directeur : . Le point de coordonnées ( 0 + 1 ; 3 + 2 ) = ( 1 ; 5 ) appartient aussi à la droite.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
on positionne un des côtés de l'équerre le long de la droite D1 en prenant soin que l'angle droit de l'équerre longe la droite ; ensuite, on déplace l'équerre le long de la droite jusqu'à ce que le point A se trouve le long du côté de l'équerre ; puis, on trace le droite passant par A.
Si l'on veut placer dans un repère le point M(2 ;-1) On commence par tracer la parallèle à l'axe des ordonnées passant par l'abscisse 2. Puis on trace la parallèle à l'axe des abscisses passant par l'ordonnée -1.
Toute droite s'écrit de la forme y = a x + b y=ax+b y=ax+b, donc il suffit de déterminer les nombres a et b. On peut commencer par lire le point b sur l'axe des ordonnées. Pour en déduire le coefficient directeur a, on se positionne sur l'ordonnée à l'origine et on décale de une unité.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = 1. L'équation de la droite (d1) est donc : y = –2x + 1.
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
D'après un théorème du cours, si ax + by + c = 0 est une équation cartésienne d'une droite (d), alors le vecteur est un vecteur directeur de (d) ; à l'aide du vecteur directeur , placer un second point de la droite à partir du point A ; relier les deux points pour obtenir la droite souhaitée.
On peut utiliser un tableur afin de tracer une droite d'équation type : y = ax + b où a est la pente ou le coefficient directeur de la droite et b l'ordonnée à l'origine (intersection de la droite avec l'axe des ordonnées).
Il est très simple de tracer une droite dont on connaît l'équation réduite. Par exemple, si la droite a pour équation y=2x+3, alors l'ordonnée à l'origine est 3 et la droite passe par le point de coordonnées (0 ; 3). Son coefficient directeur est 2, donc si x augmente de 1, alors y augmente de 2.
Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
La représentation graphique d'une fonction lineaire, c'est tout simplement une droite qui passe par l'origine du repère O (On trouvera aussi dans certains manuels le terme "courbe linéaire"). C'est une deuxième propriété des fonctions linéaires.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Sans bouger la règle, on fait glisser l'équerre le long de la règle jusqu'au point A. On trace la droite (d'). La droite (d') passe par le point A. Les droites (d) et (d') sont toutes les deux perpendiculaires au bord de la règle donc elles sont parallèles.
On bloque l'équerre avec une règle. On déplace l'équerre, le long de la règle, jusqu'à rencontrer A. On trace d' le long de l'équerre. d' et d sont toutes les deux perpendiculaires à la règle donc parallèles entre elles.
Pointez le compas en B et tracez un arc de cercle du côté de la droite où A ne se trouve pas. Répéter cette opération depuis le point D. Le nouvel arc de cercle doit couper celui que vous avez tracé juste avant. Ces deux arcs de cercles font apparaître un point D sur la feuille.