avec α = − b 2a et β = − b2 − 4ac 4a .
Le calcul de base de l'alpha soustrait simplement le rendement total d'un investissement des rendements de la valeur de référence, sur la même période. Supposons que le rendement attendu est de 12% après un an, le taux de rendement sans risque est de 10%, le bêta est de 1,2 et la valeur de référence est de 11%.
Cela signifie que l'alpha est de 0,8%.
Ce coefficient se calcule comme le ratio de la covariance entre la rentabilité d'un portefeuille (Rp) et celle du marché (Rm), par la variance de la rentabilité implicite du marché (Rm). Sa formule est donc : beta = (Cov(Rp, Rm))/Var(Rm).
f admet β comme maximum atteint pour x = α, avec α = -b2a et β = f(α). Courbe représentative : La courbe représentative d'une fonction polynôme de degré 2 dans un repère orthonormé d'origine O est une parabole de sommet S(α ; β) (α = -b2a et β = f(α)). Si a>0, la parabole est tournée vers le haut.
En mathématiques, elle permet de noter les angles. En zoologie, cette lettre nomme l'individu dominant d'une meute de loups ou de chiens (le mâle alpha). En français, alpha compose le nom alphabet, accompagné de la seconde lettre de l'alphabet grec : bêta.
Calculer \alpha
Si le trinôme, est de la forme f\left(x\right)=ax^2+bx+c, on identifie les coefficients a et b. On a \alpha=-\dfrac{b}{2a}. Ici, on a \forall x \in\mathbb{R}, f\left(x\right)=2x^2-4x+1.
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
La forme ax2 + bx + c est appelée la forme développée de f. On admet que cette forme est unique. Soit a, b et c, trois réels où a ≠ 0. Cette forme est appelée la forme canonique du polynôme.
Si x et y sont deux rationnels et si ni x, ni y, ni x + y ne sont entiers, alors Β(x, y) est un nombre transcendant.
Soit Δ = b² - 4ac le discriminant de ce trinôme. Comme > 0 , P(x) est du signe de a. Comme Δ est négatif, est positif et est positif. est donc du même signe que a.
La formule Alpha de Jensen
Sa formule de calcul est la suivante : On peut en déduire que c'est l'écart de rentabilité réel atteint (en soustrayant l'actif sans risque) ajusté du risque systématique, qui est mesuré par le bêta.
Une fois calculé, le ratio de Sharpe peut être inférieur à 0, compris entre 0 et 1, ou supérieur à 1. S'il est négatif, c'est-à-dire inférieur à 0, cela signifie que le gain espéré sera moindre, car la performance du portefeuille se trouve être inférieure à celle d'un placement où le risque serait nul.
Propriété Tout polynôme du second degré peut se mettre sous la forme : f ( x ) = a ( x − α ) 2 + β où α = − b 2 a et β = f ( α ) .
Le discriminant est strictement positif, donc le trinôme admet deux racines réelles qui sont en fait les solutions de l'équa- tion : Calcul des solutions : x1 = −b− √∆ 2a = −2− √16 2·1 = −2−4 2 = −3 x2 = −b+ √∆ 2a = −2+ √16 2·1 = −2+4 2 = 1.
Le signe de Δ indique le nombre de racines réelles : si Δ > 0 , alors il y a deux solutions réelles distinctes ; si Δ = 0 , alors il y a une solution réelle répétée ; si Δ < 0 , alors il n'y a pas de solutions réelles.
On a alors : x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0. On a alors : x0 = −b / (2a).
C'est une dénomination professionnelle de chauffagistes ou climaticiens utilisée principalement pour des calculs techniques comme les calcul de puissances thermique et autre. Le delta T (ΔT) représente la différence de deux températures. On parle également de ΔP (différence de pressions), …
α correspond au nombre pour lequel la fonction atteint un extrémum (maximum ou minimum) et β correspond à la valeur de cette extremum ( β = f(α) ). (α,β) correspond aux coordonnées du sommet de la courbe qui représente la fonction polynôme de second degré.
Exemple : L'équation 3x2 − 6x − 2 = 0 est une équation du second degré. Définition : On appelle discriminant du trinôme ax2 + bx + c , le nombre réel, noté A, égal à b2 − 4ac . Exemple : Le discriminant de l'équation 3x2 − 6x − 2 = 0 est : ∆ = (-6)2 – 4 x 3 x (-2) = 36 + 24 = 60.