Si un point M appartient à la médiatrice (d) d'un segment [AB] alors il est à égale distance de A et de B. On a : MA = MB. Si un point M est à égale distance de deux points A et B, alors M est sur la médiatrice de [AB].
La médiatrice d'un segment de droite, délimité par deux points d'un plan, est une ligne qui coupe perpendiculairement (90°) le segment en deux parties égales. Pour trouver son équation, il vous faut trouver les coordonnées du milieu du segment, la pente entre ces deux points, puis l'opposée inverse de cette pente.
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
Pour tracer la médiatrice du segment [AB], il faut en connaître deux points. On sait que les points de la médiatrice de [AB] sont à égale distance de A et de B. Pour tracer un point à égale distance de A et de B, on utilise le compas en traçant deux arcs de cercle de centre A et B respectivement et de même rayon.
Tracer la droite passant perpendiculairement par le milieu d'un côté On trace la droite passant perpendiculairement et par le milieu d'un premier côté. On obtient la première médiatrice. On trace la droite passant perpendiculairement par le milieu de \left[ BC\right], c'est-à-dire la médiatrice de \left[ BC\right].
Si un point est équidistant des extrémités d'un segment, alors ce point appartient à la médiatrice de ce segment. Pour faire simple, si un point se situe à égale distance des deux extrémités d'un segment alors ce point est sur la médiatrice.
Méthode pour une médiane issue de B dans un triangle ABC : 1) Trouver les coordonnées du milieu du segment [AB]. 2) A partir de ce milieu et du point B on peut trouver la pente de la droite. 3) On a alors une équation du type y = mx + b avec b à déterminer.
voici un truc tres simple pour trouver l'equation de la mediatrice d'un segment AB : Tu commences par trouver les coordonnees du milieu I de AB : c'est ((xA + xB)/2;(yA + yB)/2). Puis, les coordonnees du segment AB soit (xB - xA;(yB - yA). Enfin, tu ecris que tout point M (x;y) de la mediatrice verifie l'equation IM.
Si un triangle est rectangle, alors la longueur de la médiane issue de l'angle droit est égale à la moitié de l'hypoténuse. Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.
Sur une droite, deux points A et B déterminent le segment [AB]. Si le segment [AB] mesure 6 cm, son milieu M permet d'écrire : AM = MB = 3 cm. segment et on trouve M. – utilise le compas qui conserve la longueur.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Il existe un point et un seul à égale distance de trois points non alignés. Ce point est l'intersection des médiatrices des trois côtés du triangle formés par ces trois points. Le point O sur la médiatrice OC' de AB est à égale distance R des points A et B.
Droite joignant le sommet d'un triangle isocèle au milieu du côté opposé, formant l'axe de symétrie du triangle.
Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Tracer un segment consiste à relier deux points distincts par une ligne. On trace une droite en plaçant la règle sur une feuille de papier et en longeant l'un de ses bords avec un crayon à papier bien taillé.
Définition : La segment [AB] est la partie de la droite qui a pour extrémités les points A et B. On ne peut pas prolonger le tracé d'un segment. Exemple : Définition : La demi-droite [AB) est la partie de la droite qui a pour origine le point A et qui passe par le point B.
Propriété : Si deux points sont symétriques par rapport à une droite alors cette droite est la médiatrice du segment d'extrémités ces deux points. Propriété : Si un point est équidistant des extrémités d'un segment alors il appartient à la médiatrice de ce segment.
Le vecteur (−b;a) est un vecteur directeur de la droite d'équation ax+by+c=0. p. 214. Réciproquement, si le vecteur (−b;a) est un vecteur directeur de d, alors une équation cartésienne de d est ax+by+c=0 (avec c à déterminer).
Théorème de la médiane — Dans un triangle rectangle, la longueur de la médiane issue du sommet de l'angle droit vaut la moitié de la longueur de l'hypoténuse.
Le centre de gravité d'un triangle est au 2/3 en partant du sommet de chacune de ses médianes.
Le point O est le centre du cercle et le cercle passe par le point B. Un rayon est un segment qui rejoint le centre du cercle, O, à un point sur le cercle, B.
Dans le plan euclidien, il s'agit du « rond » qui est associé en français au terme de cercle. Dans un plan non euclidien ou dans le cas de la définition d'une distance non euclidienne, la forme peut être plus complexe.