Centre du cercle circonscrit à un triangle: c'est le point qui est équidistant des sommets du triangle. Pour placer ce point il faut tracer les médiatrices de deux côtés du triangle. Leur point d'intersection est le centre du cercle circonscrit au triangle.
Pour un triangle, le centre du cercle circonscrit est un point équidistant de chacun des trois sommets. Chaque triangle non dégénéré possède un tel point et il est unique. Ce résultat peut être généralisé aux polygones cycliques : le centre du cercle circonscrit est équidistant de chacun des sommets.
Cercle passant par 3 points
Mais si nous prenons les points B et C, le centre doit être sur la médiatrice de [BC]. Ainsi, le centre O du cercle cherché doit être à l'intersection de la médiatrice de [AB] et celle de [BC], ce qui donne OA = OB = OC et donc O est aussi sur la médiatrice de [AC].
En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux). Leur point d'intersection O donne le centre du cercle circonscrit.
Théorème: Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de son hypoténuse et la médiane relative à l'hypoténuse a pour mesure la moitié de celle de l'hypoténuse.
Le centre de gravité d'un triangle est au 2/3 en partant du sommet de chacune de ses médianes.
pour le centre de gravité, tu dois savoir que c'est le point d'intersection des médianes ; il suffit que tu te serves des équations y = a x + b et y = a' x + b'des questions 1 et 2 : au point G, on doit avoir a xG + b = a' xG + b', d'où tu tires xG. tu en déduiras yG ensuite.
Les bissectrices sont concourantes en un point qui est le centre du cercle inscrit dans le triangle ABC. Ce cercle est tangent intérieurement aux côtés du triangle. Les médiatrices sont concourantes en un point qui est le centre du cercle circonscrit au triangle ABC.
b. Le point O appartient au segment [AB] et AO = OB. Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment.
Il existe un point et un seul à égale distance de trois points non alignés. Ce point est l'intersection des médiatrices des trois côtés du triangle formés par ces trois points. Le point O sur la médiatrice OC' de AB est à égale distance R des points A et B.
Dans un triangle, les médiatrices des trois côtés sont concourantes en un point qui est le centre du cercle circonscrit de ce triangle. La médiatrice d'un segment est un axe de symétrie de ce segment.
Sur une carte (topographique, géologique ou autre), l'équidistance représente la différence d'altitude entre deux courbes normales successives. Cette valeur est indiquée dans la légende de la carte, mais peut être calculée très simplement. Les valeurs les plus courantes pour l'équidistance sont 10 m, 20 m ou 50 m.
on peut donc énoncer: Théorème de la bissectrice (bis) — La bissectrice d'un angle est l'ensemble des points à égale distance des côtés de cet angle.
Le point O est le centre du cercle et le cercle passe par le point B. Un rayon est un segment qui rejoint le centre du cercle, O, à un point sur le cercle, B.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
Caractérisation vectorielle de l'orthocentre
On en déduit que (AM), parallèle à (OA'), est perpendiculaire à (BC) ; c'est la hauteur (AhA) du triangle. On montre, de même, que (BM) est aussi la deuxième hauteur (BhB) et on conclut que le point M, intersection de deux hauteurs, est l'orthocentre H du triangle ABC.
Les trois médianes d'un triangle sont concourantes. Leur point d'intersection est l'isobarycentre des trois sommets, souvent appelé « centre de gravité du triangle ». Il est situé aux deux tiers de chaque médiane à partir du sommet correspondant.
Milieu, médiatrice, plan médiateur
L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB].
En statistiques, cette droite est appelée la droite de régression linéaire des points (xi,yi). (xi − x)2 = (x1 − x)2 + ··· + (xn − x)2 n . n − x2 .
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Cercles, sphères et segments
Le centre d'un cercle est le point équidistant des points de la courbe. De même, le centre d'une sphère est le point équidistant des points de la surface. Le centre d'un segment de droite est le milieu des deux extrémités.
Tracez une ligne droite qui coupe le cercle en deux points A et B (la corde du cercle). Tracez le centre C de la corde AB. Tracez la perpendiculaire à la ligne AB passant par le point C qui coupe le cercle en D et E (le diamètre du cercle). Déterminez le centre de la ligne DE qui sera aussi le centre du cercle.