L'abscisse du sommet est donnée par la formule du point milieu : h=x1+x22. h = x 1 + x 2 2 . Pour trouver l'ordonnée du sommet (k), on remplace x par la valeur de h dans l'équation de la fonction.
Pour donner la valeur du paramètre h, la fonction doit être écrite sous la forme canonique : y=af(b(x−h))+k. Lorsque c'est le cas, le paramètre h est le nombre situé à droite du signe moins dans la parenthèse.
Tangente et bissectrice
Si A est un point sur une parabole définie par un foyer F et une directrice (d), alors la tangente de la parabole en A est la bissectrice intérieure (b) de l'angle formée par F, A et le projeté orthogonal de A sur (d).
Le sommet de la parabole est le point de la parabole d'abscisse . Les branches de la paraboles sont tournées vers le haut lorsque (le sommet est alors un minimum) et vers le bas lorsque (le sommet est alors un maximum).
La parabole possède une droite, appelée directrice. La droite perpendiculaire à la directrice de la parabole et qui passe par le foyer et le sommet est l'axe de symétrie.
La hauteur maximale (flèche), ℎ , d'un projectile peut être calculé comme suit ℎ = ? ( ? ) ? , s i n où ? est la vitesse initiale du projectile, ? est l'angle de projection mesuré au-dessus du plan horizontal, et ? est l'accélération de pesanteur.
avec α = − b 2a et β = − b2 − 4ac 4a .
α correspond au nombre pour lequel la fonction atteint un extrémum (maximum ou minimum) et β correspond à la valeur de cette extremum ( β = f(α) ). (α,β) correspond aux coordonnées du sommet de la courbe qui représente la fonction polynôme de second degré.
Hauteur: dans un triangle, la hauteur (h) est la droite passant par un des sommets (A) et perpendiculaire au côté opposé (a).
Les coordonnées à l'origine d'une fonction
L'ordonnée à l'origine d'une fonction est la valeur en y du point qui se trouve directement sur l'axe des ordonnées. Conséquemment, les coordonnées d'un tel point s'écrivent (0,y) . On parle aussi de la valeur initiale de la fonction.
Passage de la forme générale à la forme canonique
( h , k ) = ( − b 2 a , 4 a c − b 2 4 a ) . Remarque : Ces deux formules s'obtiennent à partir de la forme générale ax2+bx+c a x 2 + b x + c en utilisant la méthode de factorisation appelée la complétion du carré.
L'hyperbole possède deux asymptotes, contre aucune pour la parabole. La parabole ne possède qu'un axe de symétrie, contre deux pour l'hyperbole. L'hyperbole possède un centre de symétrie, contre aucun pour la parabole.
Soient a et b deux réels. L'ensemble des points M(x; y) tels que y = ax + b forme une droite. Celle-ci est la représentation graphique de la fonction affine f qui à x associe ax+b, on dit que c'est la droite d'équation y = ax + b. a est le coefficient directeur et b est l'ordonnée à l'origine.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine.
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
Comment le calcule-t-on ? Ce coefficient se calcule comme le ratio de la covariance entre la rentabilité d'un portefeuille (Rp) et celle du marché (Rm), par la variance de la rentabilité implicite du marché (Rm). Sa formule est donc : beta = (Cov(Rp, Rm))/Var(Rm).
f admet β comme maximum atteint pour x = α, avec α = -b2a et β = f(α). Courbe représentative : La courbe représentative d'une fonction polynôme de degré 2 dans un repère orthonormé d'origine O est une parabole de sommet S(α ; β) (α = -b2a et β = f(α)). Si a>0, la parabole est tournée vers le haut.
Le discriminant est strictement positif, donc le trinôme admet deux racines réelles qui sont en fait les solutions de l'équa- tion : Calcul des solutions : x1 = −b− √∆ 2a = −2− √16 2·1 = −2−4 2 = −3 x2 = −b+ √∆ 2a = −2+ √16 2·1 = −2+4 2 = 1. L'ensemble solution est donc S = {−3;1}.
C'est la deuxième lettre de l'alphabet grec, qui correspond au « b » de notre alphabet. Elle est employée pour désigner le second élément d'une série, tandis que « alpha » désigne le premier.