Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
* On appelle PGCD à deux nombres entiers naturels non nuls le plus grand nombre entier naturel qui divise ces deux nombres. Si k est le PGCD de deux entiers naturels a et b, on note : k = PGCD ( a ; b ). Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 .
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
Généralement, en mathématiques récréatives, on considère le diviseur comme tout entier naturel qui divise un autre entier sans reste. Les questions relatives aux diviseurs touchent principalement au nombre de diviseurs d'un entier et à la somme des diviseurs. Par exemple, les diviseurs de 98 sont 1, 2, 7, 14, 49 et 98.
Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42.
Diviseurs de 90 : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90 (idem).
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 135) est la suivante : 1, 3, 5, 9, 15, 27, 45, 135. Pour que 135 soit un nombre premier, il aurait fallu que 135 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 84) est la suivante : 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84. Pour que 84 soit un nombre premier, il aurait fallu que 84 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 96) est la suivante : 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96. Pour que 96 soit un nombre premier, il aurait fallu que 96 ne soit divisible que par lui-même et par 1.
Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18.
Le nombre est divisible par 7 si et seulement si le résultat final l'est. 6 + 5 × 3 = 21 = 7 × 3. Deuxième méthode : Un nombre est divisible par 7 si et seulement si la différence entre son nombre de dizaines et le double de son chiffre des unités l'est.
Concernant 36, la réponse est : Non, 36 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 36) est la suivante : 1, 2, 3, 4, 6, 9, 12, 18, 36. Pour que 36 soit un nombre premier, il aurait fallu que 36 ne soit divisible que par lui-même et par 1.
Ces diviseurs sont 5 et 1. Nous constatons que parmi ces nombres, seul 1 n'a qu'un diviseur : lui-même ; les autres (5 ; 11 et 13) ont en deux.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 121) est la suivante : 1, 11, 121. Pour que 121 soit un nombre premier, il aurait fallu que 121 ne soit divisible que par lui-même et par 1.
Le nombre 20 a donc six diviseurs: 20, 10, 5, 4, 2 et 1.
Exemple : 12 a pour diviseurs 6, 4, 3, 2 et 1.