Le schéma de Lewis d'une molécule correspond à la représentation des atomes qui constituent la molécule et de leurs doublets liants et non liants. On représente un doublet liant par un tiret entre les deux atomes liés, et un doublet non liant par un tiret à côté de l'atome.
La représentation de Lewis d'une molécule fait apparaitre tous les atomes de la molécule ainsi que tous les doublets liants (liaisons covalentes) et non liants s'il y en a. Dans ce modèle, chaque liaison covalente (doublet d'électrons liants) est représentée par un trait simple horizontal ou vertical.
Pour justifier le schéma de Lewis de l'éthanal, il faut déterminer à partir de la configuration électronique le nombre de doublets liants et non liants pour chacun des atomes de l'éthanal, puis comparer ces nombres avec ceux déduits du schéma de Lewis.
En chimie, la formule brute est l'écriture la plus compacte décrivant un composé chimique ou un corps simple. Les formules brutes, par exemple C2H6O pour l'éthanol, sont utilisées dans les équations chimiques pour décrire les réactions chimiques.
Exemple : l'atome d'oxygène
Pour compléter sa couche de valence il engage deux de ses six électrons dans deux liaisons covalentes, il reste donc 6-2 = 4 électrons qui se regroupent par deux pour former 4/2 = 2 doublets non liants.
La formule développée est un mode de représentation des molécules où la totalité des atomes sont représentés par leur symbole chimique. Il est très simple, mais ne donne aucune idée de l'agencement des atomes dans l'espace.
Dans la configuration électronique d'un atome dans son état fondamental, le nombre d'électrons de valence se trouve en exposant dans les sous-couches de la dernière couche.
Effectuer le calcul de la masse d'un atome
Pour calculer la masse approchée d'un atome, il faut appliquer la formule suivante : m atome = A x m nucléons. On obtient la masse de l'atome (m) en multipliant le nombre de nucléons (A) par la masse (m) d'un nucléon.
Cette représentation a été inventée par Gilbert Lewis, physicien et chimiste américain, et elle est connue sous le nom de diagramme (ou notation) de Lewis. La notation de Lewis représente les électrons de valence par des points entourant le symbole de l'élément.
Le numéro de la colonne dans laquelle se situe l'élément permet de déterminer le nombre de liaisons covalentes qu'un atome doit établir : Un élément situé dans la 14e colonne doit établir 4 liaisons covalentes. Un élément situé dans la 15e colonne doit établir 3 liaisons covalentes.
Le principe du modèle de Lewis
Selon le modèle de Lewis, lorsque qu'une liaison se forme entre deux atomes ces derniers mettent en commun chacun un de leurs électrons. Cette mise en commun permet aux atomes de gagner un électron supplémentaire sur leur couche électronique externe.
Un acide de Lewis est toute espèce (molécule ou ion) qui peut accepter une paire d'électrons, et une base de Lewis est toute espèce (molécule ou ion) qui peut donner une paire d'électrons. Une réaction de Lewis acide-base se produit lorsqu'une base donne une paire d'électrons à un acide.
Exemples O : 1s2 2s2 2p4 ; 6 électrons de valence ; Cf = 6 – 4 –4/2 = 0 ; Dans une molécule l'oxygène divalent est neutre. O : 1s2 2s2 2p4 ; 6 électrons de valence ; Cf = 6 – 6 – 2/2 = -1 ; Dans une molécule l'oxygène monovalent porte une charge formelle -1.
À l'origine, un ion ayant une charge positive est un atome qui a perdu des électrons. Pour trouver le nombre d'électrons, vous devez soustraire les charges supplémentaires du numéro atomique. Si l'ion est positif, le nombre des protons est supérieur à celui des électrons. Par exemple, la charge de Ca2+ est égale à +2.
Dans un atome de charge électrique neutre, le nombre d'électrons est égal au numéro atomique. Comme les protons sont les seuls éléments du noyau avec une charge, le nombre de protons est égal au nombre d'électrons.
l'atome d'oxygène O a la capacité de s'associer à deux atomes, sa valence est donc 2 : c'est un élément bivalent ou divalent. Dans la molécule d'eau, H2O, l'atome d'oxygène forme deux liaisons covalentes, une avec chaque atome d'hydrogène.
Structure de Lewis de l'atome d'azote : N
L'azote a 5 électrons de valence. En effet, il a 7 électrons (Z=7) à répartir, la configuration électronique de N est donc : K2 L5. Le nombre d'électrons de valence (électrons se trouvant sur la dernière couche) est de 5.
La formule semi-développée n'indique que les liaisons qui constituent le squelette d'une molécule. Le schéma de Lewis d'une molécule se construit à partir de la couche de valence (couche externe) des atomes qui la constituent.
Une formule chimique est écrite : à partir du symbole de chaque sorte d'atome présent dans la molécule ; en ajoutant un indice. C'est un nombre noté en bas, à droite d'un symbole atomique, indiquant le nombre de chaque sorte d'atome.
La masse molaire moléculaire est égale à la somme des masses molaires atomiques des éléments chimiques constituant la molécule. L'unité est toujours le gramme par mole, notée g. mol–1. Ainsi, la masse molaire de la molécule d'eau H2O est : M(H2O) = 2 x M(H) + M(O) = 2 x 1,00 + 16,0 = 18,0 g.
Liaisons polaires : Une liaison covalente est polaire, si la différence des électronégativités des deux atomes formant la liaison n'est pas nulle . L'atome le plus électronégatif d'une liaison polaire attire plutôt vers lui les électrons de la liaison covalente.
Par définition, l'énergie de liaison est la différence entre le nombre de liaisons formées et le nombre de liaisons rompues : ΔH = ∑H(liaisons rompues) - ∑H(liaisons formées).
Les deux électrons mis en commun sont localisés entre les deux atomes. Elle se représente par un tiret entre les symboles des deux atomes. Le nombre de liaisons covalentes que peut former un atome est égal au nombre d'électrons qui manque sur sa couche externe pour avoir la structure stable en duet ou en octet..