Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs. Pour calculer les coordonnées du produit d'un vecteur par un scalaire, on multiplie chacune des coordonnées par le scalaire.
Les coordonnées d'un vecteur v de notre espace vectoriel favori R2 dans une base (i,j) sont deux nombres x et y qui vérifient l'équation caractéristique des coordonnées : v = xi + yj. La recherche des coordonnées est donc un probl`eme de décomposition linéaire.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Calculer la norme d'un vecteur du plan ou de l'espace, défini respectivement par les coordonnées (x,y) ou (x, y, z). La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide.
Définition - Le produit vectoriel de deux vecteurs →u et →v est le vecteur →u×→v qui satisfait les propriétés suivantes : →u×→v est perpendiculaire à →u et à →v; ‖→u×→v‖=‖→u‖‖→v‖|sinθ|
Définition : Coordonnées d'un vecteur
Les coordonnées d'un vecteur sont notées ( 𝑎 , 𝑏 ) , où 𝑎 décrit le déplacement h o r i z o n t a l et 𝑏 le déplacement v e r t i c a l de l'origine à l'extrémité du vecteur.
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
La norme d'un vecteur AB se note || AB || et cette norme est égale à la longueur du vecteur AB . Il y a donc un lien très fort entre les mots "norme", "longueur" et "distance".
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
"Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Pour ce côté là, il suffit de dire que le cardinal de (u,v) est égal au cardinal de (i,j), autrement dit, (u,v) contient autant de vecteurs que (i,j). Donc (u,v) est génératrice de V. De plus, dim V = 2 car (i,j) est une base de V. Donc (u,v) est une base de V.
u || = |k| || u || (k réel ou complexe). Normer un vecteur non nul, c'est le multiplier par l'inverse de sa norme. On obtient alors un vecteur unitaire (de norme 1). Une base d'un espace vectoriel est dite orthonormale ou orthonormée si elle est orthogonale et si ses éléments sont unitaires (de norme 1).
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1. Donc d = 1.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
Considérons deux points p et p de coordonnées res- pectives (x, y) et (x ,y ). Leur distance euclidienne est donnée par la formule p−p = √ (x − x )2 + (y − y )2.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur. Donc, si le vecteur →u est colinéaire au vecteur →v , alors il existe un scalaire k tel que →u=k→v u → = k v → .
Tout comme son écriture l'indique, le vecteur est en fait une droite qui possède un point de départ et une flèche pour indiquer son point d'arrivée et sa direction. Le vecteur de gauche (→u) correspond à la façon traditionnelle de représenter un vecteur.
Tracer le représentant du vecteur
On trace une flèche issue du premier point jusqu'au deuxième point. On trace une flèche issue du premier point jusqu'au deuxième point. On nomme le représentant du nom du vecteur.
Si , et sont trois vecteurs non coplanaires, alors ils constituent une base de l'espace. On note cette base . Soit une base de l'espace, alors, pour tout vecteur de l'espace, il existe un unique triplet (x ; y ; z) de réels tels que . Dans ce cas, on dit que l'on a décomposé en fonction de , et .
La base est définie par le nombre de signes différents qui permettent d'écrire un nombre. En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2). Dans une base « B », les chiffres ont tous une valeur inférieure à « B ». Ex : en base 5, les chiffres utilisés sont 0, 1, 2, 3, 4.
Origine, fondement, principe de quelque chose, ce sur quoi tout repose (souvent pluriel) : Établir les bases d'un accord.
Les coordonnées géographiques permettent de localiser un lieu sur la Terre grâce à trois mesures : l'altitude, la longitude et la latitude.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.