Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.
Recherche du diviseur
Pour déterminer le diviseur entre le dividende et le quotient, il suffit de faire la division entre ce même dividende et ce même quotient.
* On appelle PGCD à deux nombres entiers naturels non nuls le plus grand nombre entier naturel qui divise ces deux nombres. Si k est le PGCD de deux entiers naturels a et b, on note : k = PGCD ( a ; b ). Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 .
Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
Diviseurs de 90 : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90 (idem).
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 4) est la suivante : 1, 2, 4. Pour que 4 soit un nombre premier, il aurait fallu que 4 ne soit divisible que par lui-même et par 1.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Les diviseurs d'un nombre
Un diviseur d'un nombre est un nombre entier qui divise ce nombre sans qu'il n'y ait de reste. En d'autres mots, un nombre entier est un diviseur d'un autre nombre si le quotient est un nombre entier.
1861 = 48 x diviseur + 37 ; donc : 48 x diviseur = 1861 - 37 = 1824 ; donc : diviseur = 1824/48 = 38 .
Le nombre est divisible par 7 si et seulement si le résultat final l'est. 6 + 5 × 3 = 21 = 7 × 3. Deuxième méthode : Un nombre est divisible par 7 si et seulement si la différence entre son nombre de dizaines et le double de son chiffre des unités l'est.
Concernant 17, la réponse est : oui, 17 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (17). Par conséquent, 17 n'est multiple que de 1 et 17.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 9) est la suivante : 1, 3, 9. Pour que 9 soit un nombre premier, il aurait fallu que 9 ne soit divisible que par lui-même et par 1.
Ces diviseurs sont 5 et 1. Nous constatons que parmi ces nombres, seul 1 n'a qu'un diviseur : lui-même ; les autres (5 ; 11 et 13) ont en deux.
Concernant 13, la réponse est : oui, 13 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (13). Par conséquent, 13 n'est multiple que de 1 et 13.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.
Le nombre 20 a donc six diviseurs: 20, 10, 5, 4, 2 et 1.
Ce calculateur en ligne trouve tous les diviseurs d'un nombre entier. Exemple : les diviseurs 30 sont 1, 2, 3, 4, 5, 6, 10, 15 et 30.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.