Étape 1 : On fait coïncider le centre du rapporteur avec le sommet de l'angle. Étape 2 : On fait coïncider un des côtés avec le 0° d'une des graduations (ici, c'est la graduation intérieure). Étape 3 : On lit la mesure de l'angle sur la graduation correspondant au zéro (ici, il s'agit de la graduation intérieure).
Un rapporteur est l'instrument idéal pour tracer et mesurer des angles.
Dans le cas d'un triangle rectangle ABC rectangle en B, le cosinus de l'angle A est égal à la longueur du côté adjacent à l'angle A divisée par la longueur de l'hypoténuse, donc cos A = AB/AC.
Sur une figure, il est possible de mesurer les angles avec un rapporteur. Pour calculer sur un polygone donné la mesure d'un angle inconnu, vous devez bien identifier le polygone en question en comptant ses côtés, et en déterminant la somme totale de ses angles et la somme des angles connus.
La mesure des angles en degrés : Par convention, un angle droit est partagé en 90 parties égales mesurant 1 degré : un angle droit mesure donc 90 degrés. L'angle plat mesure donc 180°.
Certains angles aigus ont une mesure particulière comme 45 ou 60 degrés. 45° est la moitié de l'angle droit, 60° est la mesure d'un angle d'un triangle équilatéral.
Angle nul : Angle qui mesure 0 degré. Angle aigu : Angle supérieur à 0 degré et inférieur à 90 degrés. Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés.
Un angle de 75° peut également s'obtenir, cette fois très précisément, par simple tracé au compas. La méthode est relativement simple : on commence par tracer un angle de 90°, puis sa bissectrice, pour obtenir un angle de 45°.
Chacun connaît le théorème de Pythagore selon lequel le carré de l'hypoténuse (plus grand côté d'un triangle rectangle) est égal à la somme des carrés de ses deux autres côtés, qui forment l'angle droit.
Une équerre. Puisque le carré de l'hypoténuse est égal à la somme des carrés des deux autres cotés, il suffit de tracer, à la même hauteur, en partant de l'angle du mur sur un coté un point à 60 centimètres et sur l'autre mur un point à 80 centimètres.
Pour savoir de quel côté exactement se trouve ce dernier et éviter de percer le mur inutilement, cognez avec votre point de chaque côté. Si le son n'est pas creux, vous avez trouvé le montant. Afin de trouver le centre de celui-ci, rappelez-vous qu'il sera situé à environ ¾ de pouce de distance.
On connaît la longueur MN du côté adjacent à l'angle \hat{N} et la longueur NP de l' hypoténuse. 2. On va donc utiliser le cosinus|cosinus de l'angle \hat{N}. cos|cosinus\hat{N} = \frac{MN}{NP} ; d'où \hat{N} = 53° (arrondi à l'unité).
La mesure d'un angle plat est de 180°. La mesure d'un angle rentrant se situe entre 180° et 360°.