Oui, 2 027 est un nombre premier. En effet, la définition d'un nombre premier est de n'être divisible que par deux entiers distincts, 1 et lui-même. Par diviseur, on entend que le reste de la division euclidienne du premier nombre par le second nombre est nul.
Pour démontrer qu'un nombre n n'est pas premier, on lui trouve un diviseur autre que 1 et lui-même (voir cet exercice). Pour déterminer tous les diviseurs d'un entier n , on peut écrire le développement en produit de facteurs premiers de n .
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
En énumérant les six premiers nombres premiers : 2, 3, 5, 7, 11 et 13, on voit que le 6ème nombre premier est 13.
2 est un nombre premier car il n'est divisible que par 1 (2 ÷ 1 = 2) et par lui-même (2 ÷ 2 = 1) ; 4 n'est pas un nombre premier car il admet 3 diviseurs : 1, 2 et 4 ; 123 n'est pas un nombre premier, car il est divisible par 3.
Pour vous aider un peu, voici les nombres premiers de 0 à 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}. Le nombre 9 n'est pas un nombre premier, car il a plus de deux diviseurs : div (9) = {1, 3, 9}.
Le premier nombre parfait est 6. En effet 1, 2 et 3 sont les diviseurs propres de 6 et 1+2+3=6. 28 est également un nombre parfait : 1+2+4+7+14=28. Les nombres parfaits sont rares, il n'en existe que trois inférieurs à 1000 qui sont 6, 28 et 496.
Les nombres premiers
Rappelons qu'un nombre premier est un nombre entier naturel possédant exactement deux diviseurs entiers naturels, à savoir 1 et lui-même — ce qui exclut 1 comme nombre premier. La suite des nombres premiers commence ainsi : 2,\, 3,\, 5,\, 7,\, 11,\, 13,\, 17,\, 19,\, 23,\, 29,\, 31,\, \dots .
1 est un nombre à moyenne harmonique entière. 1 est le seul nombre parfait d'ordre 1 (voir nombre parfait multiple). 1 est égal à la somme de ses chiffres dans tout système de numération de base différente, c'est un nombre Harshad complet.
On peut ainsi construire ainsi de très grands nombres entiers en utilisant trois ou quatre symboles. En résumé, l'imagination mathématique de l'Homme n'a qu'une seule limite : l'infini.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Le mathématicien al-Khwarizmi est le premier à les décrire. La graphie de ces signes évolue avec le temps et aboutit à deux notations distinctes : une de type oriental adoptée au Moyen et au Proche-Orient, une de type occidental pratiquée au Maghreb et qui parvient en Espagne au Xe siècle.
Définition : Un nombre premier est un nombre qui n'a que deux diviseurs : 1 et lui-même. Exemples : 12 n'est pas un nombre premier car il est divisible par 1, 2, 3, 4, 6, 12. 1 n'est pas un nombre premier car il admet un seul diviseur, lui-même.
97 n'est divisible par aucun des entiers de 2 à 9. Donc 97 est un nombre premier.
Un trillion est l'entier naturel qui vaut 1018 (1 000 000 000 000 000 000) dans l'échelle longue, soit mille billiards ou un milliard de milliards, ou encore un million de millions de millions.
Définition 2 : Un nombre naturel est premier s'il est plus grand que 1 et qu'il n'est divisible que par 1 et par lui-même. »
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale. On doit cette performance (la vérification est en cours) au Gimps, le Great Internet Mersenne Prime Search.
Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97.