Points qui appartiennent à une même droite.
Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
Des vecteurs colinéaires, aussi appelés linéairement dépendants, sont des vecteurs qui ont la même direction. Dans un langage plus commun, des vecteurs colinéaires sont formés de droites qui sont parallèles.
On détermine si cette égalité est vérifiée. Deux vecteurs \overrightarrow{u}\begin{pmatrix} x \cr\cr y \end{pmatrix} et \overrightarrow{v}\begin{pmatrix} x' \cr\cr y' \end{pmatrix} sont colinéaires si et seulement si xy'-x'y =0.
Pour prouver que les points A, B et C ne sont pas alignés, il suffit de montrer, par exemple, que les vecteurs et ne sont pas colinéaires. Une droite du plan peut être définie par la donnée de deux points distincts ou par la donnée d'un point et d'une direction.
En géométrie euclidienne, l'alignement peut être caractérisé par un cas d'égalité de l'inégalité triangulaire : trois points sont alignés si l'un d'entre eux (que l'on peut noter B) appartient au segment joignant les deux autres (notés A et C), autrement dit si les distances satisfont la relation AB + BC = AC.
La notation d'une droite est généralement écrite à l'aide de deux points appartenant à cette droite. Trois points ou plus qui appartiennent à la même droite sont appelés points alignés. Si un point n'appartient pas à la même droite que les autres points, on dit que cet ensemble de points est non aligné.
Conclure. On place l'abscisse du point A dans l'équation de la droite, et on conclut : Si l'on obtient bien l'ordonnée de A, alors A appartient à la droite. Si l'on obtient un nombre différent de l'ordonnée de A, alors A n'appartient pas à la droite.
Les vecteurs sont parallèles si ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est une constante réelle non nulle.
Propriété : Deux vecteurs colinéaires non nuls ont la même direction. Conséquences géométriques : Dire que les vecteurs et sont colinéaires signifie que les points A, B, C sont alignés. Dire que les vecteurs non nuls et sont colinéaires signifie que les droites (AB) et (CD) sont parallèles.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.
Deux vecteurs non nuls sont égaux lorsqu'ils ont même direction, même sens et même longueur. Théorème : Soient A, B, C, D quatre points du plan.
Deux vecteurs ⃗ u (x;y) et ⃗ v (x′;y′) sont colinéaires si et seulement si : Méthode 1 : x × y ′ − x ′ × y = 0 x\times y' - x'\times y=0 x×y′−x′×y=0. Méthode 2 : il existe une réel k tel que : x ′ = k x x'=kx x′=kx et y ′ = k y y'=ky y′=ky.
Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Si les points A, B et C appartiennent à la même droite, on peut en conclure qu'ils sont alignés. Les points A, B et C appartiennent à la même droite ; ils sont donc alignés.
La norme d'un vecteur est sa longueur. Nous pouvons calculer la norme de tout vecteur en deux dimensions en utilisant le théorème de Pythagore. La norme du vecteur 𝐯 est égale à la racine carrée de 𝑎 au carré plus 𝑏 au carré, où 𝑎 et 𝑏 sont les deux composantes du vecteur.
Un point M appartient à la droite D si et seulement si les vecteurs ⃗ u et A M → {\overrightarrow{AM}} AM sont colinéaires.
On rappelle qu'un point M\left(x;y\right) appartient à une droite si et seulement si ses coordonnées vérifient une équation de la droite. Les points A et B appartiennent à la droite si et seulement si leurs coordonnées vérifient l'équation 4x-y+3 = 0.
À l'aide des équations, on reconnait deux droites sécantes lorsque leur pente est différente (car ce sont des droites qui ne sont pas parallèles). Les équations y=2x+3 y = 2 x + 3 et y=5x+1 y = 5 x + 1 sont sécantes puisque leur pente est différente.
On rappelle la condition pour que plusieurs points appartiennent au même cercle : ils doivent être à égale distance du centre du cercle.
Si EI = AI = BI, alors E appartient au cercle de centre I et de diamètre AB (puisque I est le milieu de AB).
Une demi-droite est une partie de droite dont on connaît le point de départ à une extrémité (appelé origine), mais dont l'autre extrémité est infinie.
Des points alignés ...
Or, deux droites parallèles à la même troisième sont parallèles entre elles. Donc (BS) // (BT). Ces deux droites ayant en commun le point B, elles sont confondues : S, B et T sont donc alignés.
Le but de l'organisation défini dans la « déclaration de La Havane » de 1979 est d'assurer « l'indépendance nationale, la souveraineté, l'intégrité territoriale et la sécurité des pays non alignés dans leur lutte contre l'impérialisme, le colonialisme, le néocolonialisme, la ségrégation, le racisme, et toute forme d' ...
Un angle est formé par deux demi-droites de même origine. L'origine, souvent noté O, est appelé le sommet de l'angle et les demi-droites sont appelées les côtés de l'angle. On mesure l'angle en degrés (noté °).