En mathématiques, une fonction continue nulle part dérivable est une fonction numérique qui est régulière du point de vue topologique (c'est-à-dire continue) mais ne l'est pas du tout du point de vue du calcul différentiel (c'est-à-dire qu'elle n'est dérivable en aucun point).
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.
Une fonction réelle f est nulle part continue si son extension hyperréelle naturelle a la propriété que chaque x est infiniment proche d'un y tel que la différence f(x) − f(y) est appréciable (c'est-à-dire non infinitésimale ).
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle. Proposition : Soit f:[−a,a]→C f : [ − a , a ] → C une fonction continue par morceaux.
Si b = 0, f(x) = ax, f est une fonction linéaire et la représentation graphique est une droite passant par l'origine O. Si a = 0, f(x) = b, f est constante et la droite est parallèle à l'axe des abscisses.
Exemple 1.7 (Valeur absolue)
Soit f la fonction « valeur absolue » : f (x) = |x|. f (x)−f (0) x =−1. Ainsi f est dérivable à droite et à gauche en 0 : fd (0)=+1 et fg (0) = −1, mais fg (0) = fd (0) donc f n'est pas dérivable en 0.
Une fonction constante, c'est une fonction qui ne varie pas, et donc naturellement elle a une dérivée nulle.
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
a) La fonction f admet une limite en x0 (c'est-`a-dire, f est continue en x0) si et seulement si elle admet f(x0) comme limite `a droite et `a gauche en x0. b) Si f admet des limites distinctes `a droite et `a gauche en x0, alors f n'admet pas de limite en x0.
La continuité en un point n'implique pas la dérivabilité en ce point. La fonction valeur absolue en est un contre-exemple. −3.
On dit que est intégrable sur si toute somme de Riemann S n ( f ) converge quand tend vers l'infini (c'est-à-dire quand les longueurs des intervalles tendent vers 0).
points que σ). Évidemment, I[a,b](f) ⩽ I[a,b](f). f est dite intégrable sur [a, b] si et seulement si I[a,b](f) = I[a,b](f) (pincement).
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.
La fonction valeur absolue prenant deux valeurs différentes suivant les valeurs de x, sa dérivée fera de même. Si x < 0, sa dérivée vaut −1. Si x > 0, sa dérivée vaut 1. La fonction valeur absolue n'est pas dérivable en 0.
Résumés. Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.
La définition de fonctions dérivables s'étend à une fonction à valeurs complexes. On démontre que f:I→C f : I → C est dérivable si et seulement Re(f) ℜ e ( f ) et Im(f) ℑ m ( f ) sont dérivables.
Oui. Si on note f la fonction RAC. On a lim(f) =f(0) quand x → 0. Mais f n'est pas dérivable en 0 car f '(x) = 1 / (2RAC(x)) n'est pas définie en 0 (tangente verticale).
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
En mathématiques, un zéro ou point d'annulation d'une fonction est une valeur en laquelle cette fonction s'annule. Autrement dit, il s'agit d'un antécédent de la valeur zéro. La fonction représentée ci-dessus admet deux zéros, l'un entre −3 et −2, l'autre entre −1 et 0.
On considère la fonction f définie sur R par f(x) = x sin x. donc f(xn) tend vers +∞. donc f(yn) tend vers 0. Par un raisonnement semblable à celui de l'exercice précédent, on en déduit que la fonction x ↦→ cos (1 x ) n'admet pas de limite en 0.
3) La fonction nulle est croissante mais n'est pas strictement croissante. 1) "une fonction qui est croissante ou décroissante sur I" est la définition de fonction monotone.