Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
Cas d'un triangle isocèle :
Dans tout triangle isocèle, les deux angles à la base sont égaux. Donc \hat{U} = \hat{I} = 47°. On en déduit \hat{O} : \hat{O} = 180° – (47° + 47°) = 86°.
Un triangle rectangle est un triangle ayant un angle droit (90∘) généralement représenté par un carré noir. Comme le triangle rectangle est régulièrement utilisé en géométrie, particulièrement dans la relation de Pythagore, on associe un terme bien précis à chacun de ses côtés.
Un triangle isocèle possède deux côtés égaux et deux angles égaux.
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
Un triangle ABC, dont le sommet est A, est isocèle si les côtés adjacents au point A sont égaux, soit AB=AC. Ainsi BC représente la base du triangle. Le mot isocèle vient du grec iso (mêmes) et skelos (jambes). Autrement dit, isocèle signifie quelque chose qui a les mêmes jambes.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Propriété 4b: Si un triangle est isocèle, alors ses angles à la base ont même mesure.
Comme une symétrie axiale préserve les mesures d'angle, les angles en B et en C sont égaux. Ils valent chacun 45°. Un triangle rectangle isocèle a donc un angle de 90° et deux angles de 45°.
Triangle isocèle
Le coté [BC] s'appelle la base. Propriétés : Si un triangle est isocèle alors ses deux angles à la base sont égaux.
Les deux angles égaux valent (180 − 90) ÷ 2 = 45°. Un triangle équilatéral a ses trois angles égaux à 60°, donc il ne possède pas d'angle droit. La somme des angles d'un triangle est égale à 180°.
Note: sans angle droit un triangle est appelé triangle oblique. La somme des angles d'un triangle étant égale à 180°, quelle que soit sa nature, un triangle possède toujours deux angles aigus. Le triangle équilatéral est acutangle avec ses trois angles valant 60°.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
Les deux côtés portant une marque sont égaux. Un triangle isocèle est un triangle dont deux côtés sont égaux en longueur. Plus exactement, un triangle ABC est dit isocèle en A lorsque les longueurs des côtés [AB] et [AC] sont égales.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles. On le nomme par les lettres qui se trouvent à chacun de ses sommets.
Triangle isocèle
La somme des angles d'un triangle est égale à 180°. On a donc : + + = 180°.
La démonstration
Les 3 angles du haut de la figure a, b et c forment un angle dit “plat”. C'est à dire que la somme des angles a, b et c fait 180° : a + b + c = 180°. On fait ensuite le même raisonnement avec c et e : l'angle a en haut à droite est le même que l'angle e en bas à droite.
La base du triangle isocèle est le côté opposé au sommet principal (en face). La base est le seul côté qui ne touche pas le sommet principal. [AC] est le côté opposé au sommet principal. La base du triangle isocèle est donc [AC].
Comment prouver qu'un triangle est isocèle sans mesure ? Une méthode consiste à utiliser la propriété des angles d'un triangle isocèle, qui stipule que deux angles d'un triangle isocèle sont égaux. Si l'on peut prouver que deux angles d'un triangle sont égaux, alors le triangle est isocèle.
La mesure d'un angle aigu est plus petite que 90°. La mesure d'un angle droit est de 90°. La mesure d'un angle obtus se situe entre 90° et 180°. La mesure d'un angle plat est de 180°.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Définition. Un triangle isocèle est un triangle qui a deux côtés de même longueur. Remarque : on code l'égalité des longueurs en utilisant le même symbole.
L'angle aigu, qui mesure entre 0° et 90°. Sa mesure est comprise entre l'angle nul et l'angle droit. L'angle obtus, qui mesure entre 90° et 180°. Sa mesure est comprise entre l'angle droit et l'angle plat.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.