Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.
Condition suffisante d'existence d'une primitive
Si f est une fonction continue sur l'intervalle [a,b], alors f admet une primitive F définie pour tout x ∈ [ a , b ] x \in \left[a,b\right] x∈[a,b] par F ( x ) = ∫ a x f ( t ) d t F(x) = \int_{a}^{x}f(t)dt F(x)=∫axf(t)dt.
Pour déterminer une primitive d'une fonction rationnelle, on décompose celle-ci en une somme d'une fonction polynôme et d'une fonction inverse. Exemple : Soit f\left ( x \right )=\frac{x^{2}+2}{x-3} définie sur ]3\, ;+\infty[. Elle peut s'écrire sous la forme : f\left ( x \right )=ax+b+\frac{c}{x-3}.
1) Si F est une primitive de f il en est de même de F + k o`u k est une fonction constante. 2) Si F et G sont deux primitives de f sur un intervalle I, la différence F −G est une constante. Soit c ∈ I et k ∈ R. Si f admet une primitive F, il existe une unique primitive G de f qui vérifie G(c) = k.
Définition de la primitive. Lorsque l'on a une fonction f(x) , il existe toujours une autre fonction F(x) , telle que si je la dérive donc F'(x) elle me donne la fonction f(x). D'autant il n'existe pas une seule fonction mais au contraire une infinité. Qu'est ce qu'une Primitive.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Ainsi, toutes les primitives de f (x) = 2x sont de la forme F (x) = x2 + C (C est une constante).
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
On appelle primitive de f sur I toute fonction F:I→R F : I → R , dérivable sur I , et telle que F′(x)=f(x) F ′ ( x ) = f ( x ) pour tout x∈I x ∈ I .
f est dite intégrable sur [a, b] si et seulement si I[a,b](f) = I[a,b](f) (pincement).
soit f une fonction définie sur un intervalle I. Si on définit maintenant la fonction G sur R par : G(x)=4x+3 alors G est dérivable sur R et pour tout réel : G'(x)=f(x), donc G est aussi une primitive de f sur R .
Les primitives sont utilisées quand on a la dérivée d'une fonction et qu'on cherche la fonction elle-même.
On appelle fonction logarithme népérien, noté ln (ou ), la primitive définie sur ,de la fonction x ↦ 1 x s'annulant pour . Pour : ln x > 0 est l'aire limitée par la courbe représentative y = 1 / t , l'axe et les droites d'équations et .
F'(x) = G'(x) + m = f(x). Si F est une primitive de f sur I, alors (F + k)' = F' = f, donc F + k est aussi une primitive de f sur I. Réciproquement, soit G une primitive de f sur I. Alors G' = f = F', donc G' – F' = 0, soit encore (G – F)' = 0.
Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue. Pour cet exemple, la solution la plus efficace aurait ainsi été de montrer d'abord que la fonction n'était pas continue et donc pas dérivable.
Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a. (3) f est dérivable en b si et seulement si f est dérivable `a gauche en b.
On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
Si I est un intervalle borné, toute fonction continue par morceaux et bornée sur I est intégrable sur I. En particulier, si f admet une limite finie aux bornes de I, alors f est intégrable sur I. g(t). Alors f est intégrable au voisinage de t0 si, et seulement si, g est inté- grable au voisinage de t0.
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Définition : Une fonction localement intégrable sur est une fonction intégrable sur tout intervalle fermé borné contenu dans . Par exemple si I = [ a , + ∞ [ cela signifie que, pour tout , l'intégrale existe ∫ a x f ( t ) d t , ou encore que la fonction F : x ↦ ∫ a x f ( t ) d t est définie sur l'intervalle .
Il n'y a pas de méthode donnant les primitives de √U pour le cas où U est une fonction quelconque. Il n'existe pas de formules générales d'intégration comme il existe des formules générales de dérivation. Tout au plus peut on trouver des cas particuliers, comme les formes U′U, U′U², etc.
h a donc pour primitive g(x) + ln x + k, avec k réel constant. On a donc H(x) = x ln x – x + ln x + k. Ainsi H(1) = 1 ln 1 – 1 + ln 1 + k = k – 1.
La dérivée du produit uv étant donnée par u'v + v'u, uv est une primitive de u'v + v'u sur l'intervalle [a ; b].
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.