Elle peut être rejetée ou non avec un risque α (risque de première espèce). Le non rejet de l'hypothèse nulle n'implique pas l'égalité mais entraîne une discussion autour de la puissance du test, qui implique de prendre en compte une marge arbitraire dans laquelle on considérera qu'il y a à peu près égalité.
Les chercheurs peuvent rejeter l'hypothèse nulle en faveur d'une autre hypothèse si les données contredisent l'hypothèse nulle et montrent une différence ou un lien significatif.
Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.
Hypothèse nulle - hypothèse alternative. L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage.
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
Pour être crédible, l'hypothèse doit se baser sur des faits réels. Elle doit également être vérifiable à partir de données qualitatives ou quantitatives.
Cela représente la probabilité de rejeter l'hypothèse nulle lorsqu'elle est vraie. Par exemple, un niveau de signification de 0,05 indique un risque de 5 % de conclure qu'une différence entre les résultats d'étude et l'hypothèse nulle existe alors qu'il n'y a pas de réelle différence.
Une erreur de type I survient dans un test d'hypothèse statistique lorsqu'une hypothèse nulle, qui est en réalité vraie, est rejetée par erreur. Les erreurs de type I sont également connues sous le nom de « faux positifs », elles représentent la détection d'un effet positif alors qu'il n'existe aucun effet en réalité.
Il existe différents types d'hypothèses. Nous distinguons quatre types : l'hypothèse descriptive, l'hypothèse explicative en termes de facteurs, l'hypothèse explicative en termes de typologie, l'hypothèse explicative en termes de processus.
Niveau de signification
Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
Si l'hypothèse générale détermine les effets d'un facteur ou d'une variable sur un sujet ou un phénomène, l'hypothèse opérationnelle va plus loin. Elle précise quels facteurs seront étudiés à partir de quels phénomènes.
Une erreur de type II survient dans un test d'hypothèse statistique lorsque l'hypothèse nulle est acceptée par erreur. Les erreurs de type II sont également connues sous le nom de « faux négatifs », elles représentent l'échec de détection d'un effet positif alors qu'il existe.
L'hypothèse nulle indique généralement qu'il n'y a pas d'effet, par exemple : le sexe n'a pas d'effet sur le salaire. Dans un test d'hypothèse, seule l'hypothèse nulle peut être testée ; l'objectif est de déterminer si l'hypothèse nulle est rejetée ou non.
L'idée générale est de déterminer si l'hypothèse nulle est ou n'est pas vérifiée car dans le cas où elle le serait, le résultat observé serait fortement improbable.
Choisissez un seuil de signification plus élevé, tel que 0,10, si vous souhaitez augmenter le risque de déclarer qu'un effet est significatif sur le plan statistique alors qu'aucun effet n'existe et donc avoir une plus grande puissance de détection d'un effet important.
C'est une idée que l'on va chercher à prouver par la suite. → L'hypothèse doit répondre au problème et être affirmative. Exemple : HYPOTHESE : Les feuilles mortes tombés en automne ont disparu l'été suivant PEUT-ETRE car les êtres vivants de la forêt les ont mangées.
De façon générale, un test d'hypothèse statistique vise à déterminer si une variation observée dans un échantillon de données est compatible avec un modèle “par défaut” (l'hypothèse nulle), ou si les observations sont si improbables selon cette hypothèse nulle qu'elle doit être rejetée au profit d'une hypothèse ...
n. hypothèse selon laquelle les gens constituent leurs anticipations relatives à une variable en se fondant sur les valeurs récemment observées de cette variable.
Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
La validité est utilisée pour examiner la précision avec laquelle un élément est mesuré par une méthode. Si une méthode particulière mesure effectivement tout ce qu'elle prétend et que les résultats générés correspondent étroitement aux valeurs du monde réel, la méthode est considérée comme valide.
Pour cela, il suffit de regarder le "t-stat" (t) ou bien la P-value (P>?t?), et comparer ces valeurs à des "valeurs seuils". Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.