Le 30 décembre 2021, les chercheurs et ingénieurs de l'Institut de Physique des Plasmas de l'Académie des Sciences à Hefei en Chine, ont réussi à maintenir un plasma de fusion à une température de 70 millions de degrés pendant plus de 17 minutes (1056 secondes) dans le tokamak EAST.
Deuxième « segment » de la chambre à vide finalisé La deuxième « section » de 40 degrés de la chambre à vide ITER sera finalisé au mois d'avril 2022. Construit autour du secteur n°1(7) fourni par la Corée, ce « sous-assemblage » a été finalisé plus vite que le premier grâce aux enseignements tirés.
C'est pourquoi les recherches en fusion se concentrent majoritairement sur la réaction entre deux isotopes de l'hydrogène : le deutérium et le tritium, étant la plus « facile » à réaliser bien qu'elle nécessite tout de même d'atteindre une température d'environ 150 millions de degrés.
Bombardée de neutrons, la couverture en béryllium du tokamak d'Iter va se désagréger rapidement — la durée de vie de ce métal dans un réacteur de fusion serait de cinq à dix ans 11. Il faudra non seulement remplacer ses modules régulièrement, mais évacuer après chaque expérience les poussières de béryllium.
Il atteindrait sa pleine puissance au mieux en 2035, mais sans la certitude de devenir énergétiquement viable. Pour ce qui est des premiers réacteurs prévus pour une utilisation industrielle plus rentable que la fission, certains experts s'accordent à dire qu'il faudra attendre au moins 2040-2050.
ITER est le plus grand projet scientifique mondial des années 2010. Il contiendra le plus grand réacteur à fusion nucléaire du monde lors de son achèvement en 2025.
Selon le calendrier officiel d'ITER, les premiers essais interviendront vers 2025 et seront suivis, s'ils s'avèrent concluants, de nouveaux essais dans les décennies qui suivent. En somme, pas de projets de fusion nucléaire avant 2050, dans le meilleur des cas.
Aucun risque de fusion du cœur : Un accident nucléaire de type Fukushima ne peut pas se produire dans un réacteur de fusion. Les conditions propices aux réactions de fusion sont difficiles à atteindre ; en cas de perturbation, le plasma se refroidit en l'espace de quelques secondes et les réactions cessent.
Cette réaction nécessite une température très élevée, comme celle que l'on trouve au cœur des étoiles. On peut y parvenir en bombardant les isotopes d'hydrogène par un faisceau laser très intense. L'inconvénient de cette méthode est qu'elle est très liée aux applications militaires.
On soulignera que la fusion nucléaire ne rejette pas de dioxyde de carbone ni d'autres gaz à effet de serre dans l'atmosphère et qu'avec la fission nucléaire, elle pourrait jouer un rôle dans l'atténuation du changement climatique, en tant que source d'énergie bas carbone.
D'après la roadmap de l'Union européenne, ITER sera suivi par « DEMO », un démonstrateur de la faisabilité économique de la fusion. Des projets concurrents sont en cours de développement, aux Etats-Unis, au Canada, au Royaume-Uni et en Chine. En cas de réussite, la fusion pourrait changer le cours de la civilisation.
Les limites financières
Le coût financier des installations de recherche se chiffre en milliards d'euros sur plusieurs décennies. Ce coût est donc très important pour des bénéfices potentiels éloignés dans le temps. L'investissement dans le programme ITER a par exemple été évalué initialement à 5 milliards d'euros(3).
Le but à long terme est de créer des prototypes de réacteurs capables de fonctionner en toute sûreté, respectueux de l'environnement et économiquement viables.
La construction d'iter devrait s'achever en 2018, et le premier plasma devrait être obtenu en 2019.
Les membres d'ITER (la Chine, l'Union européenne, l'Inde, le Japon, la Corée, la Russie et les États-Unis) ont mis en commun leurs ressources pour réaliser une grande ambition : reproduire sur Terre l'énergie illimitée qui alimente le Soleil et les étoiles.
Le 15 septembre 2022, le Conseil ITER a nommé Pietro Barabaschi le quatrième* directeur général d'ITER Organization. Le nouveau directeur général prendra ses fonctions au mois d'octobre.
Un technicien de General Fusion travaille sur le système d'injection de plasma de l'un des réacteurs de la société.
De son côté, la fusion consiste à rapprocher deux atomes d'hydrogène (deutérium et tritium) à des températures de plusieurs millions de degrés, comme au cœur des étoiles. Lorsque ces noyaux légers fusionnent, le noyau créé se retrouve dans un état instable.
L'Europe, qui finance 45% du projet, s'est engagée à verser une somme plafond de 6,6 milliards d'euros, selon l'Agence France Presse. Les Etats membres ont mis bien du temps à se mettre d'accord, tout d'abord parce que l'Union européenne doit composer avec ses 27 pays, mais aussi parce que le budget initial a explosé.
Le Comité Industriel ITER (C2I) œuvre pour optimiser les retombées économiques sur la région en développant les relations entre ITER et le tissu industriel local, particulièrement lors des phases de construction et d'assemblage.
La chaleur produite par ces réactions de fission va servir à produire de la vapeur, laquelle va faire tourner une turbine électrique. Ce point est commun à toutes les centrales. Pour arrêter le réacteur, c'est-à-dire pour stopper la réaction en chaîne, il faut agir sur la production des neutrons, ou les capturer.
La fusion nucléaire permet à partir de deux atomes très légers (par exemple le deutérium et le tritium) de créer des atomes plus lourds. La réaction ne pourra jamais s'emballer car ce n'est pas une réaction en chaîne. La moindre poussière dans le tokamak stoppera la réaction.
Pour obtenir du deutérium, il suffit de distiller de l'eau, qu'il s'agisse d'eau douce ou d'eau de mer. Cette ressource est largement disponible et quasiment inépuisable. Chaque mètre-cube d'eau de mer contient 33 grammes de deutérium que l'on extrait de manière routinière à des fins scientifiques et industrielles.
La fusion nucléaire est plus difficile à réaliser que la fission car ici, il faut rapprocher des atomes si près l'un de l'autre qu'ils vont se coller. Pour cela, il est nécessaire de porter la matière à une très haute température (environ 100 millions de degrés), sous une très forte pression.