Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
L'axe horizontal (abscisses) axe, également appelé axe des x, d'un graphique affiche des étiquettes de texte au lieu d'intervalles numériques, et offre moins d'options d'échelle que celles disponibles pour l'axe vertical (ordonnées), également appelé axe des y.
En géométrie cartésienne, l'ordonnée à l'origine du graphe d'une fonction désigne la valeur de l'ordonnée y lorsque l'abscisse x vaut 0. En d'autres termes, c'est la valeur de l'ordonnée du point d'intersection entre la courbe de la fonction et la droite d'équation x = 0, aussi appelée axe des ordonnées.
L'axe vertical d'un plan cartésien se nomme l'axe des ordonnées, ou l'axe des y . Cet axe gradué est orienté du bas vers le haut du plan cartésien. On y indique la valeur de la variable dépendante dans une relation entre deux variables.
La représentation graphique s'articule autour de 2 axes perpendiculaires: Un axe horizontal appelé l'axe des abscisses. Un axe vertical appelé l'axe des ordonnées.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Les nombres de la première ligne représentent les abscisses des points, ceux de la seconde représentent les ordonnées.
Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1. Le point B a pour abscisse 2,5.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Un graphique en XY ou nuage de points est constitué de deux axes gradués et légendés. L'axe des abscisses est à l'horizontale. L'axe des ordonnées est à la verticale. La légende de chaque axe doit comporter le nom ou le symbole de la grandeur et entre parenthèse le symbole de son unité.
Les graphiques ont généralement deux axes utilisés pour mesurer et classer des données : un axe vertical (également appelé axe des valeurs ou axe des y) et un axe horizontal (également appelé axe des catégories ou axe des x).
Courbes (Line chart)
Les courbes sont faciles à lire et permettent la représentation de nombreuses modalités.
À titre d'exemple, Baltimore (aux États-Unis) a une latitude de 39,28° nord et une longitude de 76,60° ouest (39° 17′ N, 76° 36′ O). Les coordonnées géographiques sont traditionnellement exprimées dans le système sexagésimal, parfois noté « DMS » : degrés ( ° ) minutes ( ′ ) secondes ( ″ ).
Chaque point peut être associé à un nombre que l'on appelle l'abscisse du point. A(1) signifie que le point A a pour abscisse 1. B(4) signifie que le point B a pour abscisse 4. Tu vas apprendre dans cette fiche comment trouver l'abscisse d'un point sur une demi-droite graduée.
Si l'on veut placer dans un repère le point M(2 ;-1) On commence par tracer la parallèle à l'axe des ordonnées passant par l'abscisse 2. Puis on trace la parallèle à l'axe des abscisses passant par l'ordonnée -1.
Graphiquement, elle exprime la variation verticale de la droite pour un déplacement horizontal d'une unité positive. L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y.
Lecture graphique d'images et d'antécédents. Méthode L'axe des abscisses est l'axe horizontal, l'axe des ordonnées est l'axe vertical. On lit les antécédents sur l'axe des abscisses et les images sur l'axe des ordonnées.
Ainsi : La pente de la l'équation se calcule avec la formule m=−AB. L'ordonnée à l'origine se calcule avec la formule b=−CB. L'abscisse à l'origine se calcule avec la formule a=−CA.
Lire l'image de a par f
On cherche ensuite, si elle existe, l'ordonnée du point d'intersection de C_f et de la droite x=a. Cette ordonnée vaut f\left(a \right), image de a par f. On détermine l'ordonnée du point d'intersection de la droite x =2 et de C_f. Le point de C_f d'abscisse 2 a pour ordonnée -1.
L'antécédent est un groupe de mots. Il est suivi d'un pronom relatif qui introduit une proposition relative. Ce groupe de mots est remplacé et repris par ce pronom relatif. Celui-ci fait donc la liaison entre l'antécédent et la proposition relative.
Pour trouver le (ou les) antécédent(s)de − 125 : on cherche − 125 sur la deuxième ligne du tableau et on lit le (ou les) antécédent(s) sur la première ligne ; un antécédent de − 125 est − 3 et on écrit h(− 3) = − 125 (ou h : − 3 − 125).