Pour lire les antécédents, la marche à suivre est la suivante: On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Trouver le ou les antécédents d'une valeur a par une fonction f revient à résoudre équation f(x)=a f ( x ) = a . Exemple : Calculer l' antécédent de 1 par la fonction affine f(x)=2x+1 f ( x ) = 2 x + 1 c'est résoudre 2x+1=1⟺x=0 2 x + 1 = 1 ⟺ x = 0 .
Le nom propre « Charles » et le nom commun « voiture » sont les deux antécédents du pronom possessif « la sienne » (anaphore). Dans cet exemple, « voiture » et « la sienne » désignent bien une voiture, mais pas la même : respectivement, la voiture de l'énonciateur, puis, celle de Charles.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
antécédent
Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0. L'antécédent de 3 par f est 6.
2 a donc deux antécédents qui sont 1 et 4.
À retenir L'image d'un nombre placé sur l'axe de abscisses se lit sur l'axe des ordonnées. Pour lire un antécédent de 1 : on place 1 sur l'axe des ordonnées, on regarde le point de la courbe qui a pour ordonnée 1 (ici c'est N ), un antécédent de 1 est l'abscisse du point N c'est à dire – 4 .
Soient f une fonction définie sur un intervalle I et a ∈ I. Si f(a)= b, alors on dira que b est l'image de a par f et que a est un antécédent de b par f.
Pour déterminer le (ou les) antécédent(s) éventuel(s) de a, on trace la droite (d):y=a, on lit les abscisses des points d'intersection de (Cf) et de (d), ce sont les antécédents !
Lire les antécédents sur un graphe
On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f. En chaque intersection, on trace une droite verticale et on lit la valeur de l'intersection avec l'axe des abscisses.
Un antécédent d'un nombre y par une fonction f est un nombre x dont l'image f par est égale à y. C'est-à-dire tel que y = f(x).
rappel : l'axe des abscisses est la droite horizontale passant par O et l'axe des ordonnées est la droite verticale passant par O. A chaque valeur de x est associée une image notée f(x).
Antécédents de -4
Cette droite coupe la courbe en deux points d'abscisses -0,9 et 2,5 environ. Le nombre -4 a donc deux antécédents par la fonction g qui sont approximativement -0,9 et 2,5.
Une fonction f est un procédé qui à un nombre x associe un nombre noté f(x). On note : f : x | f(x) on lit : la fonction f qui, à un nombre x, associe le nombre f(x). Le nombre f(x) est appelé image de x par la fonction f. Le nombre x est un antécédent de f(x) par la fonction f.
7 a pour antécédent – 2 par la fonction f .
L'image d'un nombre x par une fonction f définie sur Df est le réel y tel que f(x)=y. Pour tout réel x, on a f\left(x\right) = x^2-3x+1. Calculer l'image de -2 par f.
f) Quel nombre a pour image 16 ? 16 -4 = -4. C'est -4 qui a pour image 16 par f.
Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f. L'image de 4 par la fonction f est donc égal à -20.
"qui", "que", "dont" sont des pronoms relatifs. Un pronom relatif représente et remplace son antécédent placé généralement devant lui. Il prend le genre et le nombre de cet antécédent. Un pronom relatif introduit une proposition qui sert de complément à ce nom (ou pronom).
Une proposition subordonnée relative est toujours introduite par un pronom relatif : -qui –que –quoi –dont -où -lequel et ses composés ( laquelle, desquels ...) La proposition subordonnée relative a toujours la même fonction : elle est toujours complément de l'antécédent du pronom relatif (c.
1.La proposition relative avec antécédent
La proposition subordonnée, au sein d'un groupe nominal, vient apporter des informations supplémentaires sur le nom. Elle est introduite par un pronom relatif qui remplace le nom. On dit alors que le nom est l'antécédent du pronom relatif.