Ils sont faits pour compter, et que signifie dénombrer l'absence ? Zéro est un être troublant. Il n'a été accueilli que tardivement dans la communauté des nombres. À son introduction, zéro était plus la marque d'une absence, pour faciliter la notation positionnelle des nombres, qu'un nombre véritable.
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l'italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l'arabe ṣĭfr, le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d'une figure fermée simple : 0.
Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là. Il est le premier à définir le zéro, comme la soustration d'un nombre par lui-même.
Les nombres naturels 0 ; 1 ; 2 ; 3 ; 4 [...], les entiers relatifs [...] -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 [...], les nombres rationnels (1/2, -3/4 par exemple) sont aussi des nombres réels.
Zéro est un nombre pair. Déterminer la parité d'un nombre entier relatif c'est dire s'il est pair ou impair. La façon la plus simple de prouver que zéro est pair c'est de vérifier qu'il correspond à la définition : en effet, c'est un entier multiple de 2.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Les entiers naturels sont donc, outre zéro, ceux que l'on commence à énumérer avec la comptine numérique : un, deux, trois, quatre… Au milieu : Pour lever l'ambiguïté au sujet de la prise en compte de zéro comme entier naturel, l'ensemble est parfois noté « N0 ».
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
Le chiffre zéro a été utilisé pour la première fois par les babyloniens au cours du deuxième millénaire avant J.C., avant d'être réinventé par les Mayas puis par les Hindous. Mais ce sont les arabes qui l'intégreront à leur système de numération, pour le diffuser dans toute l'Europe au cours du X° siècle.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Les chiffres de zéro à neuf sont rendus par des mots spécifiques : sifr (صِفْرٌ) [0], wahid (وَاحِدٌ) [1], ithnan (اِثْنَانِ) [2], thalatha (ثَلَاثَةٌ) [3], arba'a (أَرْبَعٌ) [4], khamsa (خَمْسَةٌ) [5], sitta (سِتَّةٌ) [6], sab'a (سَبْعَةٌ) [7], thamaniya (ثَمَانِيَةٌ) [8] et tis'a (تِسْعَةٌ) [9].
Zéro à la puissance zéro, noté 00, est une expression mathématique qui n'a pas de valeur évidente. Il n'existe pas de consensus quant à la meilleure approche : définir l'expression (en lui donnant la valeur 1) ou la laisser non définie.
Le nombre d'or en géométrie
"Le nombre d'or est le nombre réel positif, noté φ, égal à la fraction a/b si a et b sont deux nombres en proportion d'extrême et de moyenne raison." Voici la formule correspondante : φ = (1 + √5) / 2.
Un chiffre : c'est quoi ? Il n' existe que dix chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Ce sont des signes , des symboles qui servent à écrire tous les nombres, comme les lettres de l'alphabet servent à écrire tous les mots du dictionnaire.
De plus, le nombre 0 ne peut pas être divisé par lui-même, car la division par 0 est une opération non définie. Il n'est donc pas un nombre premier.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
En arithmétique ordinaire, le nombre 0 n'a pas de signe, de sorte que −0, +0 et 0 sont identiques.
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
La division par zéro donne l'infini.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
5 est un nombre à un seul chiffre, puisqu'il est strictement inférieur à 10 ; 5 est d'ailleurs lui-même un chiffre.
Le système décimal est une « manière de compter » en utilisant 10 chiffres. Usuellement, nous comptons en base 10, c'est-à-dire que nous possédons 10 chiffres, numérotés de 0 à 9, que nous utilisons en boucle, et qui ont une valeur différente en fonction de leur placement dans le nombre.
Un nombre exprime une valeur pouvant représenter des grandeurs, des quantités, des positions, etc. Il peut être qualifié de différentes manières : un nombre peut être pair, impair, décimal, complexe, entier, cardinal, ordinal, premier, etc. Le nombre est représenté par un ou plusieurs chiffres.
L'ensemble des nombres entiers naturels est noté ℕ. Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des nombres entiers relatifs est noté ℤ. Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule.
9999 est le plus grand nombre entier ( naturel ) à 4 chiffres !