La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 72) est la suivante : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Pour que 72 soit un nombre premier, il aurait fallu que 72 ne soit divisible que par lui-même et par 1.
Un nombre entier positif est premier s'il possède exactement deux diviseurs : 1 et lui-même. Exemples et contre-exemple : • Voici la liste des 25 premiers nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…
Concernant 81, la réponse est : Non, 81 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 81) est la suivante : 1, 3, 9, 27, 81. Pour que 81 soit un nombre premier, il aurait fallu que 81 ne soit divisible que par lui-même et par 1.
72 a des facteurs de 2 et 36 . 36 a des facteurs de 2 et 18 . 18 a des facteurs de 2 et 9 . 9 a des facteurs de 3 et 3 .
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
72 est multiple de 2. 72 est multiple de 3. 72 est multiple de 4. 72 est multiple de 6.
72 est un multiple de 9 , car 72 = 9 X . 42 est un multiple de 7 , car 42 = 7 X . 56 est un multiple de 8 , car 56 = 8 X . 81 est un multiple de 9 , car 81 = 9 X .
Concernant 77, la réponse est : Non, 77 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 77) est la suivante : 1, 7, 11, 77. Pour que 77 soit un nombre premier, il aurait fallu que 77 ne soit divisible que par lui-même et par 1.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100. Pour que 100 soit un nombre premier, il aurait fallu que 100 ne soit divisible que par lui-même et par 1.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 60) est la suivante : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.
Affirmation 1 : 72 est un multiple commun des nombres 12 et 18. Vrai. 72 / 12 = 6 ; 72 / 18 =4.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Concernant 93, la réponse est : Non, 93 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 93) est la suivante : 1, 3, 31, 93. Pour que 93 soit un nombre premier, il aurait fallu que 93 ne soit divisible que par lui-même et par 1.
Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l'égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur. Par exemple, le nombre entier 7 est premier car 1 et 7 sont les seuls diviseurs entiers et positifs de 7.
Concernant 27, la réponse est : Non, 27 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 27) est la suivante : 1, 3, 9, 27. Pour que 27 soit un nombre premier, il aurait fallu que 27 ne soit divisible que par lui-même et par 1.
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, … 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, …
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 84) est la suivante : 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84. Pour que 84 soit un nombre premier, il aurait fallu que 84 ne soit divisible que par lui-même et par 1.
Exemples de nombres composés
Le nombre 57 est un nombre composé, car il peut être divisé par plus de deux nombres. 1, 3, 19 et 57 sont les facteurs de 57.
Concernant 37, la réponse est : oui, 37 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (37). Par conséquent, 37 n'est multiple que de 1 et 37.
Le carré d'un nombre (ici 17) est le produit de ce nombre (17) par lui-même (c'est-à-dire 17 × 17) ; le carré de 17 est aussi parfois noté « 17 à la puissance 2 ». Le carré de 17 est 289 car 17 × 17 = 172 = 289.
18 n'est pas divisible par 4 car, 18 divise par 4 = 4,5 donc il n'est pas exact... 35 est divisible par 5 car, 35 divise par 5 = 7 donc c'est un nombre entier .