La dérivée permet de d'étudier les variations d'une fonction sur son domaine de définition. En terminale ES, la dérivée sert à déterminer les variations de la fonction.
La dérivée, 𝑓 ′ ( 𝑥 ) est positive lorsque la courbe est au-dessus de l'axe des 𝑥 , et est négative lorsque la courbe est sous l'axe des 𝑥 . Lorsque 𝑥 ∈ ] 1 ; 5 [ , on a 𝑓 ′ ( 𝑥 ) > 0 , donc la pente de la courbe représentative de 𝑓 ( 𝑥 ) est positive.
La dérivée seconde peut également être utilisée pour déterminer la nature d'un point stationnaire. Cependant, la règle de la dérivée seconde se limite à l'étude des points stationnaires. Soit la fonction et ∗ un point stationnaire de celle-ci.
Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel x de I. Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée fonction dérivée de f et se note f '.
L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes. La primitive est la réciproque de la dérivée.
En physique, les intégrales servent également à calculer certaines grandeurs sur des espaces ou des temps donnés. Le travail d'une force d'un point à un autre peut se calculer à l'aide d'une intégrale par exemple. Les primitives sont utilisées quand on a la dérivée d'une fonction et qu'on cherche la fonction elle-même.
La dérivée permet de d'étudier les variations d'une fonction sur son domaine de définition. En terminale ES, la dérivée sert à déterminer les variations de la fonction.
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 . f (x) = ax + b cx + d .
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.
si elle est négative sur un intervalle, la pente diminue, la courbure est vers le bas, la fonction est dite « concave » sur cet intervalle ; si elle est nulle, la courbe est localement rectiligne ; si la dérivée seconde s'annule et change de signe, on a un point d'inflexion, la courbure de la courbe s'inverse.
Dérivée de u/v
(1/v) ! Même remarque que le cas précédent, donc on utilise les fonctions f et g à la place, avec f(x)=u(x) et g(x)=1/v(x). Il suffit alors d'écrire pour retrouver la bonne formule : (fg)' = f'g + fg' soit u'(1/v) + u(-v'/v^2) ou (u'v - uv')/v^2 !
Si la fonction est croissante (respectivement décroissante) alors la dérivée est positive (respectivement négative).
La dérivée de 2x est égale à 2.
Naissance de la notion de dérivée : Sir Issac Newton et Gottfried Wilheim Leibniz (fin du XVIIè s.)
La dérivée, qu'est-ce-que c'est ? Quand on a une fonction f, on peut calculer une autre fonction que l'on note f ' (à prononcer f prime), et qu'on appelle la dérivée.
La fonction exponentielle est dérivable sur Ë. Elle est sa propre dérivée, ce qui signifie que, quel que soit x : exp'(x) = exp (x) Si f(x) = ex, alors f'(x) = ex. Dem : ln ( exp (x) ) = x, les dérivées de ces deux fonctions sont donc toutes les deux égales à 1. d'où exp'(x) = exp(x).
Sa dérivée est égale à F′(x)=v′(x)f(v(x))−u′(x)f(u(x)), F ′ ( x ) = v ′ ( x ) f ( v ( x ) ) − u ′ ( x ) f ( u ( x ) ) , formule qui se démontre par application du théorème fondamental du calcul intégral et par composition.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
L'intégrale ∫baf(x)dx avec a,b éventuellement infini est 'définie' ou 'bien définie' si elle existe. La fonction t↦∫b(t)a(t)f(x,t)dx pour t∈T est 'bien définie' si l'intégrale existe pour toutes les valeurs de t dans l'intervalle T.
Soit f une fonction définie sur un intervalle I. On dit qu'une fonction F est une primitive de f sur I lorsque F est dérivable sur I et que F' = f. Avec les notations et conditions du théorème précédent, la fonction x → est une primitive de la fonction f sur [a ; b].
Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.
Définition : Soit f une fonction polynôme du second degré définie sur ℝ par f(x) = ax2 +bx + c . On appelle fonction dérivée de f, notée f ', la fonction définie sur ℝ par f '(x) = 2ax +b.