L'usage des chiffres pour l'écriture des nombres est lié à la pratique du calcul. L'écriture d'un nombre représente un nombre, c'est-à-dire une quantité alors qu'un chiffre ne représente pas de quantité. On distingue un nombre à un chiffre du chiffre qui est un simple signe.
Le système décimal, fondé sur les chiffres 0 à 9, est bien né en Inde. Il a été introduit à Bagdad, au début du IXe siècle, par le mathématicien Al-Khwarezmi. Ce savant ouzbek en a fait la promotion dans un ouvrage de vulgarisation intitulé Le Livre du calcul indien.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
C'est dans le quatrième millénaire avant J. -C., que les Sumériens, utilisateurs de la plus ancienne écriture connue (pictographique puis cunéiforme), ont développé les premiers symboles représentant des chiffres et des nombres.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
De l'italien zero , altération de zefiro , issu du latin médiéval zephirum , lui-même de l'arabe صفر , ṣifr (« vide »), lui-même calque du sanskrit शून्य , śūnya.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
En résumé, l'imagination mathématique de l'Homme n'a qu'une seule limite : l'infini.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l'italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l'arabe ṣĭfr, le vide (qui en français a également donné chiffre).
Les nombres sont apparus il y a très longtemps, aux environs de 30 000 av J. -C., durant les premières civilisations du Paléolithique. L'homme avant était incapable de compter : il était tout au plus capable de concevoir l'unité et la multitude.
Les Arabes ont transmis à l'Europe de nombreuses innovations en matière de mathématiques à travers des traités d'algèbre et de géométrie. Les mots « chiffre » et « zéro » eux-mêmes dérivent d'un mot arabe, sifr, signifiant « vide, sans contenu ».
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Par convention, le premier nombre carré est égal à 1, bien que 0 soit un carré parfait (0×0=0).
Simplement, pour bien différencier le sens du 6 par rapport au 9, on garde un tracé anguleux pour le 6, et rond pour le 9. Ce sont donc les imprimeurs, entre la fin du XIVe et le XVIe siècle qui figent progressivement la forme des chiffres, en utilisant peu à peu des casses typographiques.
Les chiffres de zéro à neuf sont rendus par des mots spécifiques : sifr (صِفْرٌ) [0], wahid (وَاحِدٌ) [1], ithnan (اِثْنَانِ) [2], thalatha (ثَلَاثَةٌ) [3], arba'a (أَرْبَعٌ) [4], khamsa (خَمْسَةٌ) [5], sitta (سِتَّةٌ) [6], sab'a (سَبْعَةٌ) [7], thamaniya (ثَمَانِيَةٌ) [8] et tis'a (تِسْعَةٌ) [9].
La division par zéro donne l'infini.
Calculer la factorielle d'un nombre entier n
La factorielle d'un entier naturel n, avec n > 2, est égale au produit de tous les entiers compris entre 1 et n. Il vient alors naturellement : n ! × (n+1) = 1 × 2 × ... × (n−1) × n × (n+1) = (n+1) !
Les puissances de 2 sont les seuls nombres qui ne sont pas divisibles par un nombre impair autre que 1. Les chiffres des unités des puissances successives de 2 forment une suite périodique (2, 4, 8 et 6). Chaque puissance de 2 est une somme de coefficients binomiaux : Le nombre réel 0,12481632641282565121024…
Re : factorielle 100
Tu décomposes en facteurs premiers tous les termes du produit et ensuites tu les multiplies ensemble pour avoir la décomposition en facteurs premiers du produit entier.