L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
Comment calculer l'écart-type
1 - On calcule la moyenne arithmétique de la série. 2 - On calcule le carré de l'écart à la moyenne de chacune des valeurs de la série. 3 - On calcule la somme des valeurs obtenues. 4 - On divise par l'effectif de la série.
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.
En règle générale, plus l'écart type est grand, plus l'erreur type de la moyenne est élevée et moins l'estimation de la moyenne de la population est précise. En revanche, plus l'effectif d'échantillon est élevé, plus l'erreur type de la moyenne est faible et plus l'estimation de la moyenne de la population est précise.
Pour une variable aléatoire 𝑋 , l'écart-type est noté 𝜎 ou 𝜎 . Son carré, appelé la variance V a r ( 𝑋 ) , est défini par 𝜎 = ( 𝑋 ) = 𝐸 ( 𝑋 − 𝐸 ( 𝑋 ) ) , V a r où 𝐸 ( 𝑋 ) désigne l'espérance de la variable aléatoire 𝑋 . L'écart-type 𝜎 s'obtient en prenant la racine carrée positive de la variance.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
Exemple : Notation des professeurs X et Y : - L'étendue des notes données par le professeur X est de (13-7)=6, ce qui signifie que l'écart maximum entre deux notes du professeur X est de 4. => La dispersion des notes du professeur Y est donc beaucoup plus forte que celle des notes du professeur X.
La façon dont les notes dans un groupe se répartissent autour de la moyenne (l'écart-type) : plus les notes de l'ensemble du groupe sont rapprochées de la moyenne, plus la cote R d'un bon élève a des chances d'être élevée.
S'assurer que les variables aléatoires sont indépendantes ou que l'on peut raisonnablement le supposer. On additionne toujours les variances même dans le cas d'une variable aléatoire différence. On calcule ensuite l'écart-type de la variable somme ou différence en prenant la racine carrée de la somme des variances.
L'écart type est une mesure de la dispersion des valeurs par rapport à la moyenne (valeur moyenne).
E ( X ) = X ¯ = x 1 + ⋯ + x N N . La variance et l'écart-type mesurent eux la dispersion des valeurs de cette série statistique autour de sa moyenne. La variance V(X) est définie par V(X)=1N((x1−¯X)2+⋯+(xN−¯X)2)=1NN∑k=1(xk−¯X)2.
∑ [terme général d'une suite arithmétique] = [nombre de termes] × [premier terme] + [dernier terme] 2 .
La statistique est la science qui consiste à réunir des données chiffrées, à les analyser et à les commenter. Une étude statistique s'effectue sur un ensemble appelé population dont les éléments sont appelés individus et consiste à observer et étudier un même aspect sur chaque individu, appelé caractère.
L'incertitude-type permet de définir un intervalle dans lequel la valeur vraie a de grandes chances de se trouver. Cet intervalle est centré sur la valeur moyenne m.
Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci. Par contre, plus une variance est élévée plus la dispersion des observations est importante ; elle est très sensible aux valeurs extrêmes.
Les mesures de dispersion servent à caractériser l'étalement des valeurs présentes dans une distribution. Plus la distribution sera étalée, plus la valeur de la mesure de dispersion sera élevée.
En statistique, un indicateur de dispersion mesure la variabilité des valeurs d'une série statistique. Il est toujours positif et d'autant plus grand que les valeurs de la série sont étalées. Les plus courants sont la variance, l'écart-type et l'écart interquartile.
La variance et l'écart-type nous permettent de quantifier à quel point les données sont dispersées ou regroupées autour de la moyenne. Une variance élevée indique une plus grande dispersion, tandis qu'une variance faible indique une plus grande concentration des données.
L'écart-type s'obtient simplement en calculant la racine carrée de la variance.
Le mot « espérance » vient du langage des jeux : lorsque X désigne le gain, E(X) est le gain moyen que peut espérer un joueur sur un grand nombre de parties. Dans l'exemple précédent, l'espérance mathématique est négative.
L'écart-type ne peut pas être négatif. Un écart-type proche de signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
standard deviation n
Standard deviation is used a lot in statistical research.