Ce test est souvent utilisé pour valider l'hypothèse de leur égalité (appelée homoscédasticité1). La comparaison des variances s'avère donc utile comme test complémentaire lorsqu'on souhaite tester l'égalité de deux moyennes (cas des petits échantillons indépendants).
Les tests de l'homogénéité des variances permettent de vérifier si les variances des échantillons à observer ne sont pas très différentes.
Si les deux échantillons suivent une loi normale, le test F peut être utilisé pour comparer les variances. L'hypothèse nulle (H0) du test F est : “les variances des deux groupes sont égales”.
Vérifier la normalité des données continues est une étape cruciale avant la réalisation d'un test d'hypothèse mettant en jeu une ou plusieurs variables continues. Il s'agit donc de s'assurer que les variables continues sont distribuées selon la loi normale.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
Le test t est un test d'hypothèse statistique utilisé pour comparer les moyennes de deux groupes de population. L'ANOVA est une technique d'observation utilisée pour comparer les moyennes de plus de deux groupes de population. Les tests t sont utilisés à des fins de test d'hypothèses pures.
Analyse de la variance (ANOVA) est une formule statistique utilisée pour comparer les variances entre la ou les moyennes de différents groupes. Elle est utilisée dans de nombreux scénarios pour déterminer s'il existe une différence entre les moyennes de différents groupes.
Tests de normalité : quelle hypothèse nulle ? Les tests de normalité impliquent l'hypothèse nulle que la variable ayant généré l'échantillon suit une distribution normale. Ainsi, une p-value faible indique un risque faible de se tromper en concluant que les données sont non-normales.
Le test de Shapiro-Wilk (W) est utilisé pour tester la normalité. Si la statistique W est significative, il faut alors rejeter l'hypothèse selon laquelle la distribution correspondante est normale.
Plus la valeur de p est petite, plus la probabilité de faire une erreur en rejetant l'hypothèse nulle est faible. Une valeur limite de 0,05 est souvent utilisée. Autrement dit, vous pouvez rejeter l'hypothèse nulle si la valeur de p est inférieure à 0,05.
Ce test est souvent utilisé pour valider l'hypothèse de leur égalité (appelée homoscédasticité1). La comparaison des variances s'avère donc utile comme test complémentaire lorsqu'on souhaite tester l'égalité de deux moyennes (cas des petits échantillons indépendants).
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Les tests d'homogénéité présentés dans cet outil correspondent à l'hypothèse alternative d'un unique décalage. Pour l'ensemble des tests, XLSTAT fournit des p-values en utilisant des rééchantillonnages Monte Carlo, les calculs exacts étant soit impossibles soit trop coûteux en temps de calcul.
Une hypothèse importante dans l'analyse de la variance (ANOVA et le test-t pour les différences de moyennes) est que les variances dans les différents groupes sont égales (homogènes).
L'analyse de la variance (ANOVA) peut déterminer si les moyennes de trois groupes ou plus sont différentes. ANOVA utilise des tests F pour tester statistiquement l'égalité des moyennes.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Le test binomial est un test exact utilisé dans le cas d'une variable aléatoire ayant deux modalités.
Il y a autocorrélation des erreurs lorsque les termes situés en dehors de la diagonale de la matrice de var-covar des erreurs ne sont pas tous nuls. Alors E ( U t , U t ′ ) ≠ 0 . Alors U t est corrélée à U t ′ . Avec U t = ρ U t − 1 + ϵ t .
Interprétation. Sachant que l'hypothèse nulle est que la population est normalement distribuée, si la p-value est inférieure à un niveau alpha choisi (par exemple 0.05), alors l'hypothèse nulle est rejetée (i.e. il est improbable d'obtenir de telles données en supposant qu'elles soient normalement distribuées).
normalité
État, caractère de ce qui est conforme à la norme, à ce qui est considéré comme l'état normal. 2. Rapport de la concentration d'une solution titrée à celle de la solution normale du même corps dissous. (La normalité d'une solution normale est égale à l'unité.)
TEST DE CORRÉLATION DE PEARSON
Il est utilisé pour étudier l'association entre un facteur d'étude et une variable de réponse quantitative, il mesure le degré d'association entre deux variables en prenant des valeurs entre -1 et 1. Des valeurs proches de 1 indiqueront une forte association linéaire positive.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.