Lorsque l'on met x à la puissance 0, on effectue donc un produit vide. Or, une somme vide, sans aucun terme, est égale à l'élément neutre pour l'addition, c'est-à-dire 0. Ainsi, un produit de 0 terme, vide, est égal à l'élément neutre pour la multiplication, c'est-à-dire 1.22 août 2006 - Google.com.
Tous les nombres exposant 0 sont égal à 1!
Par convention et pour assurer la continuité de cette fonction exponentielle de base 2, la puissance zéro de 2 est prise égale à 1, c'est-à-dire que 20 = 1. Comme 2 est la base du système binaire, les puissances de deux sont courantes en informatique.
Le nombre 9 est celui qui contient en son sein la totalité, c'est l'inclusion totale, la non différenciation. Le neuf ne s'impose pas, il s'efface devant les autres nombres et leur laisse toute la place. C'est magique non ! : 9 = 0.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
En tant que chiffre, il est utilisé pour « garder le rang » et marquer une position vide dans l'écriture des nombres en notation positionnelle. En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide.
0^0 est en effet indéfini. En fait sa valeur dépend de la définition donnée à la fonction puissance. Or, selon que l'on fait tendre x ou y en premier vers 0, on obtient soit 0 soit 1 : Si on fait tendre y vers 0 en premier, on a x^0 = e^0 = 1.
Ce sont les Babyloniens qui vont les premiers utiliser le zéro (vers le IIIe siècle après J. -C.), non pas comme un nombre ni même un chiffre, mais en tant que marqueur signifiant l'absence.
Celle-ci se base simplement sur des matrices de dimensions 2. On "note" la première matrice comme étant 1 et la deuxième matrice comme étant i. On remarque évidemment que i²=-1. On définit C comme étant l'ensemble des combinaisons (par addition, par multiplication, par multiplicication par un réel) de 1 et de i.
Toute puissance d'un nombre positif est un nombre positif. Toute puissance paire d'un nombre négatif est un nombre positif. Toute puissance impaire d'un nombre négatif est un nombre négatif. En résumé : une puissance est un nombre négatif dans le seul cas où la base est négative et l'exposant impair.
La puissance d'un nombre est le résultat de la multiplication de ce nombre par lui-même un certain nombre de fois, en fonction de l'exposant. Exemples : 22 = 2 × 2 = 4 : on multiplie 2 par lui-même 2 fois. 23 = 2 × 2 × 2 = 8 : 3 fois.
C'est la vision qu'Aristote a largement contribué à étendre jusqu'au Moyen Âge. Est 1 ce qui existe et 0 ce qui est absent. Ce sont les Babyloniens qui vont, les premiers, utiliser le zéro, non pas comme un nombre ni même un chiffre, mais comme marqueur signifiant l'absence ».
Il y a un mathématicien qui, au début du XXème siècle, a donné un nom à un nombre qui s'écrit avec un 1 suivi de 100 zéros derrière ! C'est le nombre "GOOGOL". Ce mathématicien américain, Edward Kasner, a appelé le nombre "Googol" (il a demandé à son tout petit neuveu qui a dit "Googol" un peu au hasard).
n'est pas une écriture scientifique car le chiffre devant la virgule est 0. L'écriture des nombres très grands ou très petits en notation scientifique permet de raccourcir leur écriture et de simplifier les calculs.
Lorsqu'une base est négative
Lorsque l'exposant n est un nombre pair, il y a donc un nombre pair de multiplication de nombres négatifs. Ainsi, la puissance sera positive. Lorsque l'exposant n est un nombre impair, il y a donc un nombre impair de multiplication de nombres négatifs. Ainsi, la puissance sera négative.
C'est un nombre inférieur à 1 et supérieur à 0,9, car la moyenne de deux nombres se situe toujours entre les deux nombres considérés. L'écriture décimale de m commence donc par 0,9. Cette moyenne m est aussi supérieure à 0,99 et inférieure à 1 ; c'est donc un nombre dont l'écriture décimale commence par 0,99.
0,00 1 = 10.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
L'expression de gauche, composée d'une somme infinie de termes égaux à 1, tend vers l'infini. Ainsi 0 est égal à l'infini. Et pourtant 0 n'est pas égal à l'infini.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Le 1 ici 1=1 n'est pas un chiffre c'est un nombre et pour le nombre 1 1=1 est faux. Car on n'arrive pas à faire une quantité identique d'un seule 1 pour deux 1 identique.