La trigonométrie est une branche des mathématiques qui lie la longueurs des côtés et la mesure des angles dans un triangle. En classe de troisième, on se placera plus particulièrement dans le cas du triangle rectangle, triangle qui possède un angle droit.
Divisez la classe en plusieurs groupes auxquels vous distribuez des feuilles avec une série de triangles rectangles de tailles variées mais possédant les même angles : 30° pour un groupe, 40° pour un autre, etc. Pour chaque triangle, ils doivent mesurer les côtés et calculer les rapports opp/hyp, adj/hyp, opp/adj.
La trigonométrie est basée sur le cercle de centre O (l'origine) et de rayon 1 dans un repère orthonormé du plan. Ce cercle est appelé cercle trigonométrique. On s'intéresse au sens de parcours sur ce cercle et à la mesure d'un arc.
Si la longueur de l'hypoténuse d'un triangle rectangle est égale à 1, alors la longueur de l'un des deux côtés est le sinus de l'angle opposé et est également le cosinus de l'angle aigu adjacent. Par conséquent, cette identité trigonométrique découle du théorème de Pythagore.
Pour les non scientifiques, la trigonométrie est connue principalement pour ses applications aux problèmes de mesure, cependant elle est aussi souvent employée dans des matières insoupçonnées comme en théorie de la musique ou en théorie des nombres de manière encore plus technique.
Une phrase permet de se rappeler des trois premiers théorèmes à la fois : cah soh toa pour « casse-toi » : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent. Certaines personnes préfèrent soh cah toa.
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Généralement, on utilise la loi des cosinus dans deux situations : lorsqu'on connait les mesures de deux côtés et de l'angle qu'ils forment dans le triangle ce qui permet de trouver la mesure du troisième côté (comme dans le triangle de gauche ci-dessous);
sin (angle) = (côté opposé à l'angle) divisé par (hypoténuse). cos (angle) = (côté adjacent à l'angle) divisé par (hypoténuse). tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle).
Ce sens a été choisi par les astronomes parce qu'il correspond à la rotation de la Terre ; c'est-à-dire le sens dans lequel les étoiles semblent défiler pour un observateur sur Terre (La Terre est la troisième planète du Système solaire par ordre de distance...).
En Orient, l'indien Aryabhata l'Ancien (476 ; 550) utilise la demi corde et donne les premières tables de sinus. On retrouve la configuration du sinus dans le triangle rectangle telle qu'elle est enseignée aux collégiens aujourd'hui. Aryabhata est le premier à voir la trigonométrie hors du cercle.
fém. MATH. Étude par le calcul des relations (fonctions trigonométriques) entre les éléments d'un triangle, en particulier entre les côtés et les angles.
La trigonométrie est un sous-domaine des mathématiques, qui consiste à étudier les rapports entre les mesures des angles et les mesures des longueurs dans un triangle rectangle. L'analyse de ces rapports permet de déduire des distances qu'on ne peut mesurer, par exemple, quand le triangle rectangle est très grand.
Origine du mot. Le mot sinus est un mot latin désignant, entre autres, une cavité ou une poche. C'est par une erreur de traduction qu'il a été attribué à la longueur d'un des côtés du triangle rectangle.
Important! On utilise cette loi quand on connait la mesure d'un angle et celle de son côté opposé ainsi que n'importe quelle autre valeur de côté (à gauche) ou d'angle (à droite) du triangle. En bref, il faut une paire (côté, angle) qui est complète.
Le rapport trigonométrique tangente ne s'utilise qu'avec les angles aigus d'un triangle rectangle. Ainsi, on ne cherche jamais la tangente à partir de l'angle droit.
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.
tanθ=sinθcosθ=yx θ = y x La tangente d'un angle θ est associée au rapport de l'ordonnée (y) et de l'abscisse (x) du point trigonométrique P(θ).
La tangente d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par son côté adjacent.
CASH : Cosinus = Adjacent Sur Hypoténuse ; tan = COCA = Côté Opposé / Côté Adjacent ; CAH - SOH - TOA ("Casse-toi !") : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent.
Un moyen mnémotechnique est une astuce qui permet de mieux mémoriser et restituer une information. La phrase « Mais où est donc Ornicar ? », qui se transmet de génération en génération, est l'un des moyens mnémotechniques les plus célèbres de France.
Le sinus de l'angle est le rapport des longueurs du côté opposé à cet angle et de l'hypoténuse. Le cosinus de l'angle est le rapport des longueurs du côté adjacent à cet angle et de l'hypoténuse. La tangente de l'angle est le rapport des longueurs du côtés opposé et adjacent à cet angle et de l'hypoténuse.