En particulier, cela signifie que l'abscisse 𝑥 du point d'intersection entre le côté de l'angle et le cercle trigonométrique est également positive. Le cosinus de cet angle est donc positif. De même, si l'angle se situe dans le deuxième ou troisième quadrant, son cosinus est négatif.
Maintenant les sinus et cosinus étant définis comme des coordonnées de points, ils peuvent être positifs ou négatifs.
Par définition de π, le cosinus est strictement positif sur [0, π/2[ donc (sin = cos) le sinus est strictement croissant sur [0, π/2] donc (sin 0 = 0) le sinus est strictement croissant sur ]0, π/2[ donc (cos = −sin) le cosinus est strictement décroissant sur [0, π/2].
Pour les angles situés dans le quadrant deux, l'expression du sinus est positive, mais les expressions du cosinus et de la tangente sont négatives. Pour les angles situés dans le quadrant trois, les expressions du sinus et du cosinus sont négatives, mais l'expression de la tangente est positive.
La fonction cosinus possède un zéro lorsque l'angle θ a effectué un quart de tour (θ=π2), puis un autre lorsque θ a parcouru les trois quarts du tour (θ=3π2). Puisque la rotation du cercle est infinie, la fonction possède une infinité de zéros.
En effet, la fonction cosinus est périodique de période 2π, et on sait que sur l'intervalle [0,2π[, elle ne s'annule qu'aux points π/2 et 3π/2. Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2.
Exemple : Si ABC est un triangle rectangle en A alors on a : Remarque : l'hypoténuse étant le plus grand côté dans un triangle rectangle, le rapport est toujours plus petit que 1. Le cosinus d'un angle aigu est donc un nombre compris entre 0 et 1.
En dehors des textes mathématiques, lorsqu'on parle de nombres positifs ou négatifs, le nombre zéro est généralement exclu. Ainsi le dictionnaire Lexis précise : « Les nombres négatifs, les nombres positifs et le zéro forment l'ensemble des nombres relatifs ».
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
Le sinus de l'un est égal au cosinus de l'autre et réciproquement. On va démontrer que le sinus d'un angle est égal au cosinus de son complémentaire.
Lorsque la courbe est au-dessus de l'axe 𝑥 des abscisses, le signe de la fonction est positif, quand elle est en dessous de l'axe 𝑥 des abscisses, le signe de la fonction est négatif et à l'intersection avec l'axe 𝑥 des abscisses, le signe de la fonction est nul.
La dérivée de cosinus est égale à un sinus négatif, et la dérivée de sinus est égale à un cosinus positif.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Ces fonctions trigonométriques ont déjà été étudiées en Seconde. Aux deux infinis, les fonctions sinus et cosinus n'admettent pas de limite. En effet ces deux fonctions étant 2 -périodiques, elles reproduisent à l'infini un motif. Elles ne vont ni vers une valeur finie, ni vers un infini.
La fonction sinus est dérivable en 0 et sin'(0) = 1. Pour x non nul, le taux de variation de la fonction sinus entre x et 0 est : tsin(x) = .
La fonction cosinus est paire, ce qui signifie que pour tout x de : cos(x) = cos(–x). La courbe de la fonction sinus est symétrique par rapport au centre du repère O. La fonction sinus est impaire, ce qui signifie que pour tout x de : sin(x) = – sin(x).
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Le contraire de négatif est strictement positif. Un nombre négatif est un nombre inférieur ou égal à 0. 7 est positif car -7 < 0 (le signe < signifie « plus petit que », le nombre le plus petit est montré par la pointe).
Aussi, 0 est le seul nombre à la fois positif et négatif.
Les facteurs peuvent être positifs ou négatifs
Par exemple: Prenons le chiffre 7. Les nombres premiers positifs de 7 sont 7 et 1. Les nombres premiers négatifs de 7 sont -7 et -1.
Lorsque nous avons un triangle rectangle dont l'angle est de 45 degrés, le cosinus est égal à 1/√2 ou environ 0,707.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).