- max(A) est le plus grand élément de A, i.e. un élément de A tel que tous les autres soient plus petits. Il n'existe pas nécessairement mais s'il existe il est unique. - sup(A) est le (un) plus petit élément de E qui soit plus grand que tous les éléments de A.
Soit f:E→R f : E → R une fonction définie sur un ensemble E et soit a∈E a ∈ E . On dit que f admet un maximum en a si, pour tout x∈E x ∈ E , f(x)≤f(a) f ( x ) ≤ f ( a ) .
Si une partie admet un plus grand élément, c'est sa borne supérieure. Si a et b sont deux réels tels que a<b alors sup([a, b[) = b.
Pour montrer l'inégalité sup(A) ≤ inf(B), commençons par montrer que sup(A) est un minorant de B. Il s'agit donc de montrer que, pour tout y ∈ B, sup(A) ≤ y. Soit y ∈ B quelconque. Comme on l'a vu quelques lignes plus haut, y est un majorant de A.
Si F possède un plus grand élément (en particulier si F est une partie finie d'un ensemble E totalement ordonné comme ℝ), alors cet élément maximum est la borne supérieure de F. Dans ce cas, sup(F) appartient à F. Réciproquement, si sup(F) existe et appartient à F, alors sup(F) est le plus grand élément de F.
(Mathématiques) Plus grand minorant. Note : Pour un ensemble X de réels, l'infimum, s'il existe, est le plus grand réel inférieur ou égal à tous les réels de X. L'existence d'un infimum pour les parties bornées inférieurement est toujours vérifiée, et découle de la définition mathématique des nombres réels.
Pour tout x \in I, la série numérique ( ∑ f n ( x ) ) est une série alternée dont le terme général décroît en valeur absolue vers 0. On peut donc appliquer la majoration du reste : | R n ( x ) | ≤ | f n + 1 ( x ) | ≤ sup x ∈ I { | f n ( x ) | } = μ n .
Terme utilisé pour désigner un plus petit ou un plus grand objet d'un ensemble de nombres ou d'une figure géométrique. Une borne peut appartenir ou ne pas appartenir à l'ensemble concerné. Les bornes d'un intervalle sont les limites de cet intervalle. La borne d'une figure est la frontière de cette figure.
Une partie d'un ensemble ordonné est bornée si elle admet à la fois un majorant et un minorant dans l'ensemble ordonné. En dehors du cas où la partie elle-même contient un majorant et un minorant, cette définition dépend donc a priori du reste de l'ensemble ordonné.
On dit que la suite u est majorée lorsqu'il existe un réel M tel que pour tout entier naturel n, un ≤ M. Le nombre M est alors appelé un majorant de la suite u. On dit que la suite u est minorée lorsqu'il existe un réel m tel que pour tout entier naturel n, un ≥ m.
Soit f : I → R une fonction continue. Alors – f est bornée : il existe M ≥ 0 tel que pour tout x ∈ I, |f(x)| ≤ M ; – f atteint ses bornes : il existe c1, c2 ∈ I tel que f(c1) = min{f(x) | x ∈ I}, f(c2) = max{f(x) | x ∈ I}.
Au fait pour montrer qu'un ensemble n'est pas borné, on peut comme le dit Bisam trouver une suite de points dont la norme tend vers l'infini, ou alors montrer qu'il contient un ensemble non borné. Pour tes deux exemples on trouve facilement des droites qu'ls contiennent, et on sait qu'une droite n'est pas bornée.
Proposition Si M est un majorant de f et N un majorant de g, alors M + N est un majorant de f + g. Si M est un majorant de f et N un majorant de g, avec f et g positives, alors MN est un majorant de fg. . Si M est un majorant de f , alors −M est un minorant de −f .
Trouver le maximum d'une fonction c'est calculer f(m) . Exemple : Maximiser f(x)=−x2 f ( x ) = − x 2 , définie sur R , la fonction atteint son maximum en x=0 , f(x=0)=0 f ( x = 0 ) = 0 et f(x)<=0 f ( x ) <= 0 sur R .
Une fonction f définie dans un sous-ensemble E de nombres réels admet un maximum M en un point a de E si M = f(a) et si, quel que soit x de E, f(x) est inférieur ou égal à f(a). On dit alors que M est le maximum de l'ensemble des images de f.
Il y a une deuxième méthode : Si f(M) - f(x) > 0, alors M est le maximum de f. Si f(m) - f(x) < 0, alors m est le minimum de f. La fonction carré f(x) = x² admet un minimum en 0 qui est 0.
Définition : On dit qu'un réel est un majorant de si tout élément de est inférieur ou égal à . On dit que est majorée si admet un majorant (elle en admet alors une infinité). On définit de même un minorant, une partie minorée.
Fonctions minorées
On dit qu'une fonction numérique (f,D) est 'minorée sur D' sur l'ensemble f(D) est minoré, autrement dit s'il existe un réel m tel que f(x)≥m ∀x∈D. Illustration: Il résulte de cette définition que: Si f est minorée sur D, alors l'ensemble f(D) possède une borne inférieure.
Par définition de ·∞, un ensemble X est borné s'il est inclus dans un pavé [−a,a]N, qui est compact. Si de plus X est fermé, c'est un fermé dans un compact, donc il est compact.
Pour comparer deux nombres décimaux on utilise les symboles > ou = . Le signe , signifie « est inférieur à » ou « est strictement inférieur à » ou « est plus petit que ». Le signe >, signifie « est supérieur à » ou « est strictement supérieur à » ou « est plus grand que ».
Si un>0 u n > 0 et si la série ∑un ∑ u n converge, alors (un) est décroissante à partir d'un certain rang. Si un>0 u n > 0 , et si la série ∑un ∑ u n converge, alors la série de terme général u2n u n 2 converge. Si (−1)nnun→1 ( − 1 ) n n u n → 1 , la série ∑un ∑ u n converge.
La série harmonique diverge
En calculant les premières sommes partielles de la série harmonique, il apparaît que la suite de nombres obtenus est croissante, mais à croissance lente : on pourrait croire qu'il s'agit d'une série convergente. En fait, la série harmonique diverge, ses sommes partielles tendent vers +∞.
Prouver la convergence normale de ∑nun ∑ n u n sur I revient donc à trouver une inégalité |un(x)|≤an | u n ( x ) | ≤ a n valable pour tout x∈I x ∈ I , où (an) est une suite telle que la série ∑nan ∑ n a n converge.