Quand Est-ce que une suite est de Cauchy ?

Interrogée par: Christophe Dupuis  |  Dernière mise à jour: 15. Januar 2025
Notation: 4.9 sur 5 (16 évaluations)

Une suite (un)n∈N sera dite de Cauchy si pour tout ϵ > 0 il existe N ∈ N tel que |un − um| < ϵ pour tout m, n ≥ N. Proposition 3.2. Toute suite convergente est de Cauchy.

Comment prouver qu'une suite est une suite de Cauchy ?

On dit qu'une suite (un) d'un espace métrique (X,d) est une suite de Cauchy lorsque ∀ε>0, ∃N∈N, ∀p,q≥N, d(up,uq)<ε ∀ ε > 0 , ∃ N ∈ N , ∀ p , q ≥ N , d ( u p , u q ) < ε (si on se place dans un espace vectoriel normé (E,N) , on remplace d(up,uq) d ( u p , u q ) par N(up−uq) N ( u p − u q ) ).

Est-ce que toute suite bornée est de Cauchy ?

Toute suite de Cauchy est bornée. Une suite de Cauchy a au plus une valeur d'adhérence et si elle en a une, alors elle converge.

Comment montrer que la suite est convergente ?

2/ Théorèmes de convergence

* Si (un) est croissante et majorée alors (un) converge. La suite « monte » mais est bloquée par « un mur » donc elle possède une limite finie. * Si (un) est décroissante et minorée alors (un) converge. La suite « descend » mais est bloquée par « un mur » donc elle possède une limite finie.

Comment montrer que toute suite convergente est bornée ?

En effet, si |xn| ≤ K pour tout n > N alors |xn| ≤ M pour tout n, en posant M = max(|x0|, |x1|, … , |xN|, K). Toute suite convergente est par conséquent bornée (par exemple la suite un = (–1)n/(n + 1), qui converge vers 0, reste comprise entre u1 = –1/2 et u0 = 1).

C'est quoi une suite de Cauchy ?

Trouvé 15 questions connexes

Comment montrer que toute suite convergente est de Cauchy ?

On conçoit facilement qu'une suite convergente est de Cauchy, c'est une conséquence de l'inégalité triangulaire : si | u p − l | et | u n − l | sont petits il en est de même pour | u p − u n | .

Comment montrer que toute suite de Cauchy est bornée ?

Démonstration. Soit (un)n∈N une suite de Cauchy et soit N ∈ N tel que |un − uN | < 1 pour tout n ≥ N. Ainsi, pour tout n ≥ N on a |un| < 1 + |uN |. On en déduit que la suite (un)n∈N est bornée par max{|u0|,|u1|,...,|uN−1|,|uN | + 1}.

Quand une suite est divergente ?

Si la suite ne se rapproche d'aucun réels, alors elle est divergente. Mais attention : une suite divergente admet soit une limite infinie, soit aucune limite. On dira qu'une suite un admet pour limite +∞ si tout intervalle ouvert ]a ; +∞[ contient tous les termes de la suite un à partir d'un certain rang p.

Comment savoir si une suite est géométrique ?

Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.

Comment montrer une suite est majorée ?

On dit que la suite u est majorée lorsqu'il existe un réel M tel que pour tout entier naturel n, un ≤ M. Le nombre M est alors appelé un majorant de la suite u. On dit que la suite u est minorée lorsqu'il existe un réel m tel que pour tout entier naturel n, un ≥ m.

Quand Dit-on qu'une suite n'est pas de Cauchy ?

On remarque, ici encore, que la différence entre deux termes consécutifs S n + 1 − S n = 1 n + 1 tend, elle, vers 0, alors que la suite n'est pas de Cauchy.

Est-ce que toute suite convergente est de Cauchy ?

On traduit ce théorème en disant que est un corps complet ce qui signifie que toute suite de Cauchy d'éléments de est convergente dans ; est le complété de c'est à dire le plus petit corps complet contenant .

Comment vérifier si une suite est bornée ?

Une suite est bornée si et seulement si elle est majorée et minorée. Montrer que la suite \left(u_n\right) est bornée.

Est-ce que toute suite convergente est bornée ?

Propriété : Toute suite convergente est bornée. Donc si une suite n'est pas bornée, elle n'est pas convergente ! Mais, attention ! Il existe des suites bornées qui ne sont pas convergentes, par exemple la suite de terme général .

Qu'est-ce qu'une suite croissante ?

Définitions : • Une suite est croissante si chaque terme est supérieur ou égal à son précédent : un+1 ≥ un ou: Une suite est décroissante si chaque terme est inférieur ou égal à son précédent : un+1 ≤ un ou: Une suite est monotone si elle est croissante ou si elle est décroissante.

Quand une suite est constante ?

la suite (un) telle que un = n pour tout n; • la suite (un) telle que un = 2n pour tout n. lLa suite (un) telle que un = αn pour tout n, o`u α est un réel donné. Une suite est dite constante si il existe un réel x tel que un = x pour tout n.

Comment justifier qu'une suite n'est pas géométrique ?

Autrement dit, il faut montrer que le quotient est constant : Pour montrer qu'une suite n'est pas géométrique, il suffit de montrer que, sur les premiers termes par exemple, le quotient n'est pas constant.

Comment démontrer que la suite est décroissante ?

▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.

Quel est la nature d'une suite ?

La nature d'une suite (convergence ou divergence) ne dépend que de son comportement quand n → + ∞ ; on dit encore à partir d'un certain rang. On peut en particulier modifier les termes d'une suite pour un nombre fini d'indices sans en changer la nature.

Comment Appelle-t-on une suite qui n'est ni croissante ni décroissante ?

Une fonction peut-elle être ni croissante ni décroissante ? - Quora. Oui, cela s'appelle une fonction non monotone. C'est une fonction qui ne croit ni ne décroit.

Quelle est la différence entre la convergence et la divergence ?

La convergence signifie que deux moyennes mobiles se rejoignent, tandis que la divergence signifie qu'elles s'éloignent l'une de l'autre.

Quand Dit-on qu'une suite est bien définie ?

1. (un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.

Comment vérifier la loi de Cauchy ?

Une variable aléatoire X suit la loi de Cauchy si elle est absolument continue et admet pour densité : f(x)=1π×11+x2. f ( x ) = 1 π × 1 1 + x 2 .

Comment résoudre un problème de Cauchy ?

Si y = 0 la fonction f est de classe C1 et le théorème de Cauchy-Lipschitz assure l'existe d'une unique solution locale. y(t) − 2 √ y0 = t − t0. −y(t) − 2 √ −y0 = t − t0. Donc l'unique solution du problème de Cauchy est donnée par : y(t) = − 1 4 (t − t0 − 2 √ −y0)2.

Comment montrer qu'une série est croissante ?

∑ k = 0 n v k = u n + 1 − u 0 . En particulier, la suite (un) converge si et seulement si la série ∑n(un+1−un) ∑ n ( u n + 1 − u n ) converge. Si la suite (un) est une suite de réels positifs, alors la suite (Sn) est croissante.

Article suivant
Qui paie les cotisations MSA ?