En mathématiques, un zéro ou point d'annulation d'une fonction est une valeur en laquelle cette fonction s'annule. Autrement dit, il s'agit d'un antécédent de la valeur zéro.
Fondamental. Soit une fonction définie et dérivable sur un intervalle . Si la dérivée s'annule en changeant de signe en c ∈ I , alors admet un extremum en .
Soit f: [a,b] sur R une fonction continue telle que f(a)=f(b). Montrer que la fonction g(t) = f(t+(b-a)/2) - f(t) s'annule en au moins un point de [a, (a+b)/2 ] .
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.
Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur R une fonction, notée f ' dont l'expression est f '(x) = 2x . Cette fonction s'appelle la fonction dérivée de f. Le mot « dérivé » vient du latin « derivare » qui signifiait « détourner un cours d'eau ».
Définition : Signe d'une fonction
Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction ? ( ? ) sur un intervalle ? , le signe est positif si ? ( ? ) > 0 pour tout ? dans ? , le signe est négatif si ? ( ? ) < 0 pour tout ? dans ? .
On appelle zéro, ou abscisse à l'origine d'une fonction f, une valeur de x pour laquelle f(x)=0. Une fonction peut avoir plusieurs zéros.
Le centre ( point 0) d'un repère orthogonal se nomme l'origine du repère.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0).
Pour déterminer les abscisses des extremums d'une fonction, on cherche les points où la dérivée s'annule en changeant de signe. Pour déterminer les abscisses des points d'inflexion de sa courbe, on cherche les points où la dérivée seconde s'annule en changeant de signe.
A retenir : a est l'abscisse d'un point d'inflexion de la courbe si la dérivée seconde s'annule en changeant de signe en a. Si la dérivée première s'annule en changeant de signe en a, alors a est l'abscisse d'un extremum.
La courbe en cloche ou courbe de Gauss est l'une des courbes mathématiques les plus célèbres. On la voit apparaître dans un grand nombre de situations concrètes — en statistiques et en probabilités — et on lui fait souvent dire tout et n'importe quoi.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
L'abscisse à l'origine est la valeur de l'abscisse (x) lorsque l'ordonnée (y) vaut zéro. Autrement dit, c'est l'endroit sur le graphique où la droite croise l'axe des abscisses.
Les coordonnées à l'origine d'une fonction
L'ordonnée à l'origine d'une fonction est la valeur en y du point qui se trouve directement sur l'axe des ordonnées. Conséquemment, les coordonnées d'un tel point s'écrivent (0,y). On parle aussi de la valeur initiale de la fonction.
1) Sens de variation :
a) Fonction croissante sur un intervalle : Une fonction f est dite croissante sur un intervalle I si , lorsque les valeurs de la variable x augmentent alors les valeurs des images f(x) augmentent aussi. Pour tout x1 et x2 de l'intervalle I , si x1 x2 alors f(x1) f(x2).
On dit qu'une fonction f est croissante ssi pour x et y dans le DD de f , si on a x ≤ y, on a aussi f (x) ≤ f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x ≤ y ⇒ f (x) ≤ f (y).
Repérer la tangente sur le graphique
Repérons sur le graphique la tangente à Cf au point d'abscisse a si elle est déjà tracée. Si la tangente est horizontale, on s'arrête et on conclut sans plus de calculs que f'(a) = 0.
La dérivée de 1 est nulle, car c'est une constante.
L'image de 4 par la fonction f est 0.
L'axe horizontal (axe des abscisses, ou axe des x) est utilisé pour représenter la variable indépendante, alors que l'axe vertical (axe des ordonnées, ou axe des y) est utilisé pour représenter la variable dépendante.