si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0).
Si une fonction est décroissante et dérivable sur un intervalle alors sa dérivée est négative sur cet intervalle. Si une fonction est constante et dérivable sur un intervalle alors sa dérivée est nulle sur cet intervalle.
Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses. La dérivée d'une fonction constante est nulle. Mais une fonction dont le domaine de définition n'est pas un intervalle, et ayant une dérivée nulle, n'est pas forcément constante.
Si la dérivée seconde est positive alors la fonction f est convexe. Si la dérivée seconde est négative alors la fonction f est concave.
Une fonction est dite concave sur un intervalle si, pour toute paire de points sur le graphe de , le segment de droite qui relie ces deux points passe en dessous de la courbe de . Une fonction convexe possède une dérivée première croissante ce qui lui donne l'allure de courber vers le haut.
A retenir : a est l'abscisse d'un point d'inflexion de la courbe si la dérivée seconde s'annule en changeant de signe en a. Si la dérivée première s'annule en changeant de signe en a, alors a est l'abscisse d'un extremum.
Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ≤ f(x2).
- Étudier la dérivée : toujours indispensable ? Soit f une fonction dérivable sur un intervalle I. Si la fonction dérivée f' est strictement positive sur I, sauf peut-être en certains points isolés où elle est nulle, alors la fonction f est strictement croissante.
Etudier le signe de f'(x) sur l'intervalle I
A l'inverse, si f'(x) est inférieure ou égale à 0, alors f est décroissante sur I. Pour connaître le signe de f', il suffit simplement de déterminer les valeurs de x pour lesquelles f'(x) s'annule, or on sait construire le tableau de signe d'une fonction de type ax + b.
Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.
La dérivée de 1 est nulle, car c'est une constante.
De manière plus rigoureuse, on dit qu'une fonction définie sur A sous-ensemble de ℂ, par exemple, est une fonction nulle (ou est la fonction nulle de A) si c'est la restriction à A de la fonction nulle précédente (autrement dit, si ∀ x ∈ A, ƒ(x) = 0 et si ƒ n'est pas définie en dehors de A).
Lorsqu'une fonction n'est pas définie pour une valeur, le nombre dérivé n'existe pas et l'affaire est pliée : il est évident que la fonction inverse n'est pas dérivable en 0 puisqu'elle n'y est pas définie. Là où ça se complique, c'est lorsque la fonction est définie en un point mais qu'elle n'y est pas dérivable.
On parle de point d'inflexion pour signifier que la courbe traverse sa tangente en ce point. Dans le cas cartésien, y = f(x), le phénomène se produit lorsque la dérivée seconde f ", dérivée de la dérivée, s'annule en changeant de signe (changement de concavité), cas bien connu des élèves de Terminale.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
On a ainsi : f (x) = u(x) + v(x).
La dérivée d'une fonction permet : De calculer le coefficient directeur et donc l'équation d'une tangente. De déterminer, avant de faire un graphique, les intervalles où la fonction est croissante ou décroissante.
La courbe en cloche ou courbe de Gauss est l'une des courbes mathématiques les plus célèbres. On la voit apparaître dans un grand nombre de situations concrètes — en statistiques et en probabilités — et on lui fait souvent dire tout et n'importe quoi.
L'image de 0 par la fonction f est 0.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Pour déterminer les abscisses des extremums d'une fonction, on cherche les points où la dérivée s'annule en changeant de signe. Pour déterminer les abscisses des points d'inflexion de sa courbe, on cherche les points où la dérivée seconde s'annule en changeant de signe.
Se dit d'un point d'une courbe où la demi-tangente à droite et la demi-tangente à gauche n'ont pas le même support.
Lorsque E est muni d'une distance ou d'une norme, on peut aussi définir les extrema locaux. On dit que f admet un maximum local (ou relatif) en a s'il existe un voisinage V de a dans E tel que, pour tout x∈V x ∈ V , on a f(x)≤f(a) f ( x ) ≤ f ( a ) .