Une fonction à valeurs réelles est dite majorée ( resp. minorée) si l'ensemble de ses valeurs possède un majorant ( resp. minorant) réel. Elle est bornée si et seulement si elle est à la fois majorée et minorée.
Une partie A d'un espace métrique borné (E,d) est dite bornée s'il existe x∈E x ∈ E et M>0 tel que A⊂B(x,M), A ⊂ B ( x , M ) , c'est-à-dire que, pour tout x∈A, x ∈ A , d(x,a)≤M. d ( x , a ) ≤ M .
La fonction f est continue sur l'intervalle fermé borné [0,A], donc f est bornée sur cet intervalle : il existe M tel que pour tout x ∈ [0,A], f(x) ⩽ M. En prenant M = max(M,l + 1), nous avons que pour tout x ∈ R, f(x) ⩽ M . Donc f est bornée sur R.
Une partie d'un ensemble ordonné est bornée si elle admet à la fois un majorant et un minorant dans l'ensemble ordonné.
Pour f(x) = 3x+5/x+2 est bornée sur l\'intervalle I = [-1;10] : Cette fonction n'est pas bornée en x=0. Elle admet en ce point une limite qui vaut +infini. Tu t'es sans doute trompée dans l'écriture de ta fonction. Peut être voulais tu écrire f(x) = 3x+5/(x+2).
1. Manquer d'intelligence, avoir des idées étroites ; être obtus, limité : Individu, esprit borné. 2. Avoir des bornes, des limites : Son avenir est borné.
On dit que la suite u est bornée lorsqu'elle est à la fois majorée et minorée. Si la suite u est une suite croissante et majorée, alors elle converge. Si la suite u est décroissante et minorée, alors elle converge. Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M.
Si l'ensemble des majorants d'une partie A de R admet un plus petit élément M on dit que M est la borne supérieure de A et on note M = sup(A). Cette borne est alors unique. Si l'ensemble des minorants d'une partie A de R admet un plus grand élément m, on dit que m est la borne inférieure de A et on note m = inf(A).
En effet, si |xn| ≤ K pour tout n > N alors |xn| ≤ M pour tout n, en posant M = max(|x0|, |x1|, … , |xN|, K). Toute suite convergente est par conséquent bornée (par exemple la suite un = (–1)n/(n + 1), qui converge vers 0, reste comprise entre u1 = –1/2 et u0 = 1).
Sur un tel espace, toute fonction continue f à valeurs réelles atteint automatiquement sa borne supérieure M (sinon, la fonction 1/(M – f) serait continue et non bornée) et, de même, sa borne inférieure. Le théorème des bornes peut donc s'énoncer ainsi : tout segment réel est pseudo-compact.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Une suite croissante non majorée tend vers +∞ . Soit f:R→R f : R → R une fonction continue et (un) une suite convergeant vers ℓ . Alors (f(un)) ( f ( u n ) ) converge vers f(ℓ) .
La fonction peut donc être définie par 𝑓 ( 𝑥 ) = 2 𝑥 + 4 (notation fonctionnelle) ou 𝑓 ∶ 𝑥 ⟶ 2 𝑥 + 4 (notation par flèche). Cela signifie que l'on peut déterminer si 𝑓 définit une fonction en traçant la représentation graphique de 𝑦 = 𝑓 ( 𝑥 ) et en effectuant le test de la droite verticale.
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
Propriété : Toute suite convergente est bornée. Donc si une suite n'est pas bornée, elle n'est pas convergente ! Mais, attention ! Il existe des suites bornées qui ne sont pas convergentes, par exemple la suite de terme général .
On veut pouvoir dire que la suite de fonctions (fn) converge vers f lorsque la courbe représentative de la fonction fn se rapproche, quand n tend vers l'infini, de celle de f.
Démonstration. Soit (un)n∈N une suite de Cauchy et soit N ∈ N tel que |un − uN | < 1 pour tout n ≥ N. Ainsi, pour tout n ≥ N on a |un| < 1 + |uN |. On en déduit que la suite (un)n∈N est bornée par max{|u0|,|u1|,...,|uN−1|,|uN | + 1}.
Théorème (admis)
Pour tout réel k compris entre ƒ(a) et ƒ(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que ƒ(c) = k. Autrement dit, pour tout réel k compris entre ƒ(a) et ƒ(b), l'équation ƒ(x) = k admet au moins une solution dans l'intervalle [a ; b].
En mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants.
La relation x ≥ y se dit x est supérieur ou égal `a y. Si x ≤ y, on dit que x minore y ou que y majore x. Soit E un sous-ensemble de R, on dit a est un majorant de E si a majore tous les éléments de E. Par exemple, 2 est un majorant de [−1, 1].
Une suite à la fois minorée et majorée est dite bornée. Par exemple, la suite u n = 1 n u_n= \dfrac {1}{n} un=n1 est bornée car, pour tout entier naturel non nul n, 0 < 1 n ≤ 1 0 < \dfrac {1}{n} \leq1 0<n1≤1.
2/ Théorèmes de convergence
* Si (un) est croissante et majorée alors (un) converge. La suite « monte » mais est bloquée par « un mur » donc elle possède une limite finie. * Si (un) est décroissante et minorée alors (un) converge. La suite « descend » mais est bloquée par « un mur » donc elle possède une limite finie.
Une suite est convergente si elle tend vers un nombre fini ; une suite est divergente si elle tend vers l'infini ou si elle n'a pas de limite.
Comment trouver les bornes d'un terrain ? Les bornes d'un terrain sont généralement placées aux limites de propriété. Vous pouvez les retrouver physiquement en consultant le plan de bornage ou en faisant appel à un géomètre-expert.