Le produit scalaire sert à différentes choses, notamment le calcul de l'angle entre deux vecteurs. Lorsque nous disposons des composantes des vecteurs, nous utiliserons la formule u → ⋅ v → = u x v x + u y v y + u z v z pour calculer le produit scalaire.
Le produit scalaire est très important en mathématiques, car il caractérise l'orthogonalité : les droites (AB) et (CD) sont orthogonales si, et seulement si, −−→AB⋅−−→CD=0. A B → ⋅ C D → = 0. En outre, les calculs de longueur sont aussi reliés au produit scalaire, par la relation AB=√−−→AB⋅−−→AB. A B = A B → ⋅ A B → .
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Le produit scalaire est donc du signe du cosinus, c'est-à-dire positif si l'angle formé par les vecteurs est aigu et négatif si l'angle est obtus (à visualiser sur le cercle trigonométrique).
Le produit scalaire permet d'exploiter les notions de la géométrie euclidienne traditionnelle : longueurs, angles, orthogonalité en dimension deux et trois, mais aussi de les étendre à des espaces vectoriels réels de toute dimension, et (avec certaines modifications dans la définition) aux espaces vectoriels complexes.
(d) Le produit scalaire de deux vecteurs. Il s'agit d'une opération de multiplication entre deux vecteurs donnant comme résultat un scalaire, c'est-à-dire un nombre. Il est noté en général avec un point →u⋅→v. Pour le distinguer de la multiplication usuelle, nous le noterons →u⊙→v.
Le produit scalaire est distributif : ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑤 = ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑢 ⋅ ⃑ 𝑤 . Le produit scalaire de deux vecteurs ⃑ 𝑢 et ⃑ 𝑣 est égal au produit de leurs normes et du cosinus de l'angle qu'ils forment : ⃑ 𝑢 ⋅ ⃑ 𝑣 = ‖ ‖ ⃑ 𝑢 ‖ ‖ ⋅ ‖ ‖ ⃑ 𝑣 ‖ ‖ ⋅ 𝜃 , c o s où 𝜃 est l'angle entre ⃑ 𝑢 et ⃑ 𝑣 .
Si ϕ : E × E → C est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si ϕ : E × E → K est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si 〈·|·〉 est un produit scalaire sur E alors pour tout x ∈ E, 〈x|x〉 ≥ 0. On pose alors x = √〈x|x〉 qu'on appelle la norme de x.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
où le point centré représente le produit scalaire(*). La vérification du fait que ce produit est associatif est aisée. Elle repose sur deux propriétés classiques du produit vectoriel, à savoir le fait qu'il agit par applications antisymétriques et l'identité du double produit vectoriel.
Le produit scalaire et le produit vectoriel sont deux calculs réalisés à partir deux vecteurs de même nombre de composantes. Ils ont en revanche des différences fondamentales: Avec le produit scalaire on obtient un scalaire (c'est-à-dire un nombre) tandis qu'avec le produit vectoriel on obtient un vecteur.
Le produit vectoriel est commutatif, quel que soit l'ordre dans lequel interviennent les deux vecteur, le résultat reste le même.
La trace d'une matrice carrée M est la somme de ses coefficients diagonaux 1, notée tr(M). L'application M ↦→ tr(M) est une forme linéaire sur Mp(R). Propriété. La produit scalaire canonique de Mn,p(R) est donné par la formule (A|B) = tr( tA · B).
Le produit scalaire de deux vecteurs est un nombre réel, qui peut être positif, négatif ou nul. sont bien orthogonaux. , on a . des vecteurs et a un nombre réel.
Si les deux vecteurs ont le même sens, alors leur produit scalaire sera toujours un nombre POSITIF. Mais, si les vecteurs sont de sens opposés, alors leur produit scalaire sera NEGATIF. Si un des vecteurs est nul ( égal à 0) alors le produit scalaire des deux vecteurs est nul (égal à 0).
le produit vectoriel de deux vecteurs est nul si et seulement si ces deux vecteurs sont colinéaires.
D'après le cours, deux droites sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux, c'est-à-dire si le produit scalaire de ces deux vecteurs est nul.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Si le produit scalaire de deux vecteurs est nul, on dit que ces vecteurs sont orthogonaux. Pour que deux vecteurs non nuls aient un produit scalaire nul, il faut que leurs droites d'application soient perpendiculaires (ainsi, le projeté orthogonal du deuxième sur le premier est un point, de longueur nulle).
Soit u et v deux vecteurs de coordonnées u (xy) et v (x′y′). Alors u ⋅v =xx′+yy′. Exemple : Soit u et v deux vecteurs de coordonnées u (20,5) et v (3−4). Alors u ⋅v =2×3+0,5×(−4)=6−2=4.
On calcule la matrice produit C = A B . Chacun des éléments de la matrice est le produit scalaire du vecteur associé à l'une des lignes de la matrice et du vecteur associé à l'une des colonnes de la matrice . Plus précisément c i , j est le produit scalaire du vecteur a i → et du vecteur b j → .
Corollaire 34 – Si E est de dimension n, la forme bilinéaire symeétrique associée `a une forme quadratique q est un produit scalaire si et seulement si la signature de q est égale `a (n, 0).
Le produit vectoriel est une opération qui peut être appliquée à deux vecteurs et qui produit un autre vecteur. Le produit vectoriel est utilisé dans de nombreux domaines de la physique. Il peut notamment être utile pour calculer le couple sur un objet.
La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853.