Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Le test t est un test d'hypothèse statistique utilisé pour comparer les moyennes de deux groupes de population. L'ANOVA est une technique d'observation utilisée pour comparer les moyennes de plus de deux groupes de population. Les tests t sont utilisés à des fins de test d'hypothèses pures.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Il s'agit d'une variable numérique. Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche).
Quel est l'avantage d'utiliser un test paramétrique ? Les tests paramétriques sont, eux, plus puissants en général que leurs équivalents non-paramétriques. Autrement dit, un test paramétrique sera plus apte à aboutir à un rejet de H0, si ce rejet est justifié.
Le test de Student indépendant classique suppose l'homogénéité des variances des deux groupes à comparer. Si les deux échantillons suivent une loi normale, le test F peut être utilisé pour comparer les variances. L'hypothèse nulle (H0) du test F est : “les variances des deux groupes sont égales”.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Le test exact de Fisher calcule la probabilité d'obtenir les données observées (en utilisant une distribution hypergéométrique) ainsi que les probabilités d'obtenir tous les jeux de données encore plus extrêmes sous l'hypothèse nulle. Ces probabilités sont utilisées pour calculer la p-value.
L'analyse de variance permet simplement de répondre à la question de savoir si tous les échantillons suivent une même loi normale. Dans le cas où l'on rejette l'hypothèse nulle, cette analyse ne permet pas de savoir quels sont les échantillons qui s'écartent de cette loi.
Le principe de l'ANOVA repose sur la dispersion des données (c'est à dire l'écartement des données autour de la moyenne). L'idée derrière l'Analyse de la variance à un facteur est de dire que la dispersion des données a deux origines : d'une part, l'effet du facteur étudié.
Pour savoir si la distribution des réponses de deux variables qualitatives est due au hasard ou si elle révèle une liaison entre elles, on utilise généralement le test du Khi2 dit «Khi-deux».
Ce calcul nous indique à combien d'unités d'erreur-type se situe la différence observée de la moyenne populationnelle de 0. Lorsque le degré de signification est petit (p < 0,05), nous pouvons rejeter l'hypothèse nulle et conclure que les deux moyennes ne proviennent pas de la même population.
Le score T est en fait le score Z multiplié par 10, auquel on ajoute 50. Ainsi, lorsqu'elle est transformée en score T, la moyenne d'une distribution normale prend la valeur de 50, alors que l'écart-type a une valeur de 10. La valeur de T se calcule donc à partir de la valeur Z préalablement calculée.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Le test de corrélation est utilisé pour évaluer une association (dépendance) entre deux variables. Le calcul du coefficient de corrélation peut être effectué en utilisant différentes méthodes. Il existe la corrélation r de pearson, la corrélation tau de Kendall et le coefficient de corrélation rho de Spearman.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
La valeur t mesure l'ampleur de la différence par rapport à la variation de vos données d'échantillon. En d'autres termes, T est simplement la différence calculée représentée dans les unités de l'erreur type de la moyenne. Plus l'ampleur de T est grande, plus la preuve contre l'hypothèse nulle est grande.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
2. Le test de Mann-Whitney. le test de Mann-Whitney est l'alternative non paramétrique de t de Student pour deux échantillons indépendants. Lorsque la distribution des valeurs ne suit pas une loi normale, donc dissymétrique, le test t de student ne s'applique pas; il faut utiliser plutôt le test de Mann-Whitney.
La procédure Test U de Mann-Whitney utilise le rang de chaque observation pour tester si les groupes sont issus de la même population. Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
En statistiques, le test de Kolmogorov-Smirnov est un test d'hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.