Le boson de Higgs fut découvert au Cern en 2012. La découverte de cette
Boson de Higgs.
Ce dernier est considéré par les physiciens comme la clef de voûte de la structure de la matière, en quelque sorte la particule élémentaire qui donne leur masse à toutes les autres.
La particule, dont l'observation est attendue depuis des dizaines d'années, viendrait corriger une faille majeure découverte dans le «modèle standard» de la physique.
Les protons et les neutrons sont eux-mêmes formés de quarks. Dans l'état actuel de la science, les quarks ne sont pas formés d'autres composantes, de sorte que ce sont les choses les plus petites que nous connaissions.
La taille d'un nucléon est d'environ 10-15m, soit un millionième de millionième de millimètre ! Un quark est théoriquement une particule ponctuelle, elle ne doit donc pas avoir de taille... En tout cas, si les quarks ont une taille, elle est inférieure à 10-18m, soit au moins mille fois plus petit que le nucléon !
En physique des particules, un quark est une particule élémentaire et un constituant de la matière observable. Les quarks s'associent entre eux pour former des hadrons, particules composites, dont les protons et les neutrons sont des exemples connus, parmi d'autres.
On ne peut pas « trouver » le boson de Higgs quelque part. Il doit être produit au cours d'une collision de particules puis se désintégrer en d'autres particules qui peuvent alors être identifiées dans des détecteurs. Les traces de ces particules se trouvent dans les données collectées.
Le boson de Higgs est surnommé, au grand dam des scientifiques, la “particule de Dieu”, celle qui donne à la matière sa masse. C'est une très petite particule que les chercheurs ont longtemps supposée comme existante.
L'oganesson, l'élément le plus lourd du tableau périodique
Aujourd'hui, c'est l'oganesson, de numéro atomique 118, qui est officiellement l'élément chimique le plus lourd du tableau périodique. Synthétisé en 2002, il est très instable et se désintègre en moins d'une milliseconde.
On peut distinguer dans l'univers deux types de substance : la matière, qui possède une masse, et la lumière, de masse nulle. La lumière peut se propager dans le vide, toujours à la même vitesse.
L'atome représente un point limite de l'infiniment petit.
La plus petite particule que nous connaissons à ce jour, outre les quarks, est le neutrino. Propriétés et caractéristiques du neutrino : -sa masse est quasiment nulle, déjà que l'électron ne pèse pas lourd, le neutrino a une masse 30 mille fois inférieure à celui-ci…
Le champ de Higgs permet de préserver la symétrie à haute énergie et d'expliquer la brisure de la symétrie à basse énergie. Il est responsable de la masse des bosons électrofaibles, mais interagit aussi avec les fermions (quarks et leptons), qui acquièrent ainsi une « masse ».
Les atomes, encore parfois présentés à tort comme plus petites unités de matière, sont constitués de fermions, « particules de matière », maintenus ensemble par des bosons, « particules de force ». Le noyau d'un atome est composé de protons et de neutrons.
En 1808, John Dalton reprend l'idée d'atomes afin d'expliquer les lois chimiques. Dans sa théorie atomique, il fait l'hypothèse que les particules d'un corps simple sont semblables entre elles, mais différentes lorsque l'on passe d'un corps à un autre.
La toxine botulique a été rendue célèbre pour ses usages cosmétiques. Mais, elle est surtout, à ce jour, la substance la plus toxique que l'on connaisse.
Niels Bohr (1885-1962).
On peut citer deux sources d'antimatière au niveau de la Terre : la radioactivité naturelle et les rayons cosmiques.
Définition de mie
Partie molle à l'intérieur du pain. La croûte et la mie.
Il est possible de stocker des particules d'antimatière chargées, telles que les antiprotons, en utilisant des pièges électromagnétiques qui confinent les particules à l'intérieur d'un champ magnétique de manière à ce qu'elles ne s'annihilent pas au contact d'autres particules.
L'expression vient du livre du prix Nobel Leon Lederman, « The God Particle ». L'ouvrage de ce scientifique américain est consacré à la physique des particules et à la quête ultime de cette discipline : la découverte du boson... L'expression vient du livre du prix Nobel Leon Lederman, « The God Particle ».
Au commencement de l'Univers, avant la formation du champ de Higgs, les particules ne comportaient aucune masse. Elles se déplaçaient donc à la vitesse de la lumière. Puis, les bosons de Higgs sont apparus, ralentissant les particules et leur donnant une masse.
La bonne nouvelle est tombée le 4 juillet 2012. Deux expériences parallèles du LHC, les détecteurs ATLAS et CMS, ont détecté un boson dans une région de masse de l'ordre des 126 GeV, très exactement là où l'on attendait le boson de Higgs.