Trigonométrie Exemples. Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(45) est 1 .
Trigonométrie Exemples. La valeur exacte de cos(45°) cos ( 45 ° ) est √22 .
La valeur exacte de sin(45) est √22 .
On met la calculatrice en mode degré ; on tape 100, inv puis tan. L'affichage est : 89,4270613. Le résultat est : l'angle qui a pour tangente 100 mesure 89,4° (au dixième près par défaut). Remarque : la démarche est la même si on connaît un cosinus ou un sinus.
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
La valeur exacte de sin(60°) sin ( 60 ° ) est √32 .
La valeur exacte de sin(60) est √32 . Le résultat peut être affiché en différentes formes.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
Jacques OZANAM (1640 - 1718) dans son traité de trigo de 1697 parle encore de sinus de complément et dresse la table des sinus et tangente seulement. Le mot COSINUS est né dans le texte en France entre OZANAM-1697 et BELIDOR-1725.
En Orient, l'indien Aryabhata l'Ancien (476 ; 550) utilise la demi corde et donne les premières tables de sinus. On retrouve la configuration du sinus dans le triangle rectangle telle qu'elle est enseignée aux collégiens aujourd'hui. Aryabhata est le premier à voir la trigonométrie hors du cercle.
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
La cotangente de l'angle d'un triangle rectangle est l'inverse de sa tangente. Elle est égale au quotient de la longueur du côté adjacent par la longueur du côté opposé.
Dans le cas d'un triangle rectangle ABC rectangle en B, le cosinus de l'angle A est égal à la longueur du côté adjacent à l'angle A divisée par la longueur de l'hypoténuse, donc cos A = AB/AC.
En d'autres mots, tanθ=ΔyΔx=sinθcosθ où θ= mesure de l'angle au centre du cercle trigonométrique.
D'où cos 120 = 1/2 !