On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
L'antécédent de " 1 ": Pour déterminer l'antécédent de " 1 ", il suffit de résoudre l'équation: f ( x) = 1. Calcul du discriminant = b2 - 4 ac: = 22 - 4 x 1 x 1 = 0.
L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0. L'antécédent de 3 par f est 6. Soit f la fonction définie sur \mathbb{R}\backslash\left\{ -2\right\} par f\left(x\right)=\dfrac{x-1}{x+2}.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Pour cela, nous devons résoudre l'équation f(x) = 7 où l'inconnue est x. Le seul antécédent de 8 par la fonction f est donc x = 4.
On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
Pour résoudre l'équation f\left(x\right) = \alpha, si l'on connaît plusieurs expressions f\left(x\right), il peut être utile de sélectionner l'expression la plus appropriée (celle qui rend la résolution de l'équation f\left(x\right) = \alpha la plus simple possible). Le seul antécédent de 4 par f est -2.
Il s'agit de trouver le nombre x tel que h(x) = –10. Or, h(x) = 5x donc 5x = –10 ; soit x = = –2. L'antécédent de –10 par h est –2.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
On donne la fonction affine f d'expression f(x)=x+3. Quelle est l'image de 3 par la fonction f ? L'image de 3 par la fonction f est 6.
Pour déterminer le ou les antécédents d'un nombre a donné, on trace la droite (d) d'équation . On lit les abscisses des points d'intersection de la courbe (C) et de la droite (d). Les antécédents se lisent en abscisses !!!!
L'antécédent est le nom ou le pronom auquel se rapporte un pronom relatif ou un pronom anaphorique. Exemples : - C'est le livre dont je t'avais parlé. -> Livre est l'antécédent du pronom relatif dont.
L'image de 0 par la fonction f est 0.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
L'image de 1 par f vaut 1² = 1, soit f(1 )= 1.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
Exemples : • Si f(x) = x2, alors le nombre 16 a deux antécédents qui sont –4 et 4. En effet, (–4)2 = 42 = 16. Si f(x)=x–1x–3, alors le nombre 1 n'a pas d'antécédent car il n'existe aucun nombre x tel que x–1x–3=1, ce qui est équivalent à x – 1 = x + 3.
d'une fonction f , notée f C , on calcule ( ) f a et on compare le résultat à b . Exemple : Le point ( ) 1 ; 4 A appartient à la courbe représentative de f définie par ( ) ² 2 3 =- + + f x x x , car (1) 1² 2 1 3 4 =- + × + = f .
Le seul antécédent de 12 par la fonction f est donc x = 4.
Le nombre 0 admet donc deux antécédents par ℎ qui sont 1 et −1.
Résoudre l'équation f(x) = g(x) consiste à déterminer tous les réels x de D qui ont la même image par f et par g. Propriété Graphiquement, les solutions de f(x) = g(x) sont les abscisses des points d'intersection des courbes représentatives de f et de g.
Quel est l'antécédent de -11 par la fonction f ? L'antécédent de −11 par la fonction f est 2.
Calcul de valeurs
Par exemple : g(-2) = 3 x (-2)² -1 Donc g(-2) = 11. 11 est l'image de -2 par la fonction g. -2 est un antécédent de 11 par la fonction g.
On dit que 9 est l'image de -3 par la fonction f.
4 est l'image de 8.