Le PGCD est le dernier reste non nul, c'est-à-dire PGCD(72 ;40)=8. Deux nombres a et b sont dits premiers entre eux si PGCD(a;b)=1. Si a et b sont premiers entre eux, alors la fraction a b est irréductible.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
Les diviseurs de 40 sont 1 ; 2 ; 4 ; 5 ; 8 ; 10 ; 20 ; 40 les diviseurs de 60 sont 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 10 ; 12 ; 15 ; 20 ; 30 ; 60. Les diviseurs communs de 60 et 40 sont donc 1 ; 2 ; 4 ; 5 ; 10 et 20. Le plus grand diviseur commun aux deux nombres est 20.
Le PGCD de deux nombres est leur plus grand diviseur commun. Le plus grand diviseur commun de 45 et 72 est 9.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
Donc le PGCD(27, 45) = 3 · 3 = 9.
Reprenons 30 et 48 : 30=2×3×5. 48=2×2×2×2×3. On remarque que le produit 2×3=6 est commun aux deux et est le plus grand produit commun, il est donc le PGCD.
Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36.
2. D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Les diviseurs de 12 sont : 1;2; 3; 4 ; 6 ; 12. Les diviseurs de 15 sont : 1; 3; 5 ; 15. Donc : pgcd(12; 15) = 3.
Par exemple, le PGCD de 16 et 24 est 8, car il s'agit du plus grand diviseur commun entre 16 et 24. Ces nombres ont aussi d'autres diviseurs communs, soit 2 et 4, mais il ne s'agit pas de leur plus grand diviseur commun.
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
Les diviseurs communs a et b sont les diviseurs du PGCD(a;b). Pour trouver les diviseurs communs à 15 et 20, il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5.
60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24.
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
* 36 = 2 x 2 x 3 x 3. * 84 = 2 x 2 x 3 x 7. Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 .
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Indiquez tous les facteurs pour 45,75 pour déterminer les facteurs communs. Les facteurs communs pour 45,75 sont 1,3,5,15 1 , 3 , 5 , 15 . Le plus grand facteur commun des facteurs numériques 1,3,5,15 1 , 3 , 5 , 15 est 15 .
20 a pour diviseurs 1,2,4,5,10,20. 25 a pour diviseurs 1,5,25. Le plus grand commun diviseur est 5.
Les facteurs communs pour 28,49 sont 1,7 . Le plus grand facteur commun des facteurs numériques 1,7 est 7 .
Les facteurs communs pour 18,36,45 18 , 36 , 45 sont 1,3,9 1 , 3 , 9 .
1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.