Le but du jeu du PGCD est de trouver le nombre le plus grand qui va permettre de diviser à la fois le nombre a et le nombre b. Par exemple, Le pgcd de 6 et 9 est 3 car il est diviseur commun le plus grand de 6 et de 9.
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers.
Les diviseurs communs de 12 et 18 sont 1, 2, 3, et 6. Le PGCD (12 ; 18) est 6. Méthode 2 : Algorithme des soustractions. Propriété du PGCD : On prend deux nombres entiers strictement positifs a et b.
Par exemple, le PGCD de 16 et 24 est 8, car il s'agit du plus grand diviseur commun entre 16 et 24. Ces nombres ont aussi d'autres diviseurs communs, soit 2 et 4, mais il ne s'agit pas de leur plus grand diviseur commun.
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
Le PGCD de 25 et 100 est 25.
Présentation. Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36.
Pour une introduction, voir Plus grand commun diviseur de nombres entiers. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
20 a pour diviseurs 1,2,4,5,10,20. 25 a pour diviseurs 1,5,25. Le plus grand commun diviseur est 5.
Reprenons 30 et 48 : 30=2×3×5. 48=2×2×2×2×3. On remarque que le produit 2×3=6 est commun aux deux et est le plus grand produit commun, il est donc le PGCD.
On note : PGCD(72, 54) = 18.
Indiquez tous les facteurs pour 72,120 pour déterminer les facteurs communs. Les facteurs communs pour 72,120 sont 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 . Le plus grand facteur commun des facteurs numériques 1,2,3,4,6,8,12,24 1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 est 24 .
Pour trouver les diviseurs communs à 15 et 20, il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5.
– Prenons un exemple avec 108 et 60.
Les diviseurs de 60 sont 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60. Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
On utilise le PGCD quand on s'occupe des diviseurs communs à ces nombres et qu'on désire chercher le plus grand de ces diviseurs.
Les facteurs communs pour 45,75 sont 1,3,5,15 1 , 3 , 5 , 15 . Le plus grand facteur commun des facteurs numériques 1,3,5,15 1 , 3 , 5 , 15 est 15 .
PGCD ( 182 ; 78 ) = 26 Julie pourra faire 26 bouquets identiques.
Les facteurs communs pour 27,36 sont 1,3,9 1 , 3 , 9 . Le plus grand facteur commun des facteurs numériques 1,3,9 1 , 3 , 9 est 9 .
Donc le PGCD (60 ; 84) = 12.
* 36 = 2 x 2 x 3 x 3. * 84 = 2 x 2 x 3 x 7. Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12.
Indiquez tous les facteurs pour 72,90 pour déterminer les facteurs communs. Les facteurs communs pour 72,90 sont 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 . Le plus grand facteur commun des facteurs numériques 1,2,3,6,9,18 1 , 2 , 3 , 6 , 9 , 18 est 18 .
En effet, 420 = 2 x 10 x 21 et 540 = 2 x 10 x 27. Or PGCD(21 ; 27) = 3 donc PGCD(420 ; 540) = 2 x 10 x 3 = 60.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 . Le PGCD de 48 et 72 est donc : 24 .
PGCD(110 ; 88) = 22
Super !