36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Diviseurs de 24 : 1; 2; 3; 4; 6; 8; 12; 24 (diviseurs associés et rappels des critères de divisibilité).
Le PPCM de 24,36 est le résultat de la multiplication de tous les facteurs premiers par le plus grand nombre de fois qu'ils apparaissent dans chaque nombre. Multiplier 2⋅2⋅2⋅3⋅3 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 . Multiplier 2 2 par 2 2 . Multiplier 4 4 par 2 2 .
Les diviseurs de 36 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 et 18. Les diviseurs communs à 24 et 36 sont donc 1 ; 2 ; 3 ; 4 ; 6 et 12.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Une fois que l'on a la liste des diviseurs de chaque nombre, on ne garde que ceux qui apparaissent dans les deux listes (c'est-à-dire les diviseurs COMMUNS). Il suffit ensuite de prendre le plus grand : c'est le PGCD. Le plus grand est 8, donc le pgcd de 16 et 24 est 8 !
6 est le PGCD de 18 et 24.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 24) est la suivante : 1, 2, 3, 4, 6, 8, 12, 24. Pour que 24 soit un nombre premier, il aurait fallu que 24 ne soit divisible que par lui-même et par 1.
Les autres multiples communs sont des multiples du PPCM. Exemple : Le PPCM de 3 et 8 est 24 , les multiples communs à 3 et 8 sont tous les multiples de 24 : 24,48,72,96,…
Par exemple, 6 est le plus grand diviseur commun de 24 et 42, parce que 6 divise 24 (24/6 = 4, reste 0), 6 divise 42 (42/6 = 7, reste 0), et aucun nombre plus gran que 6 ne divise a la fois 24 et 42: 7 divise 42 mais pas 24, 8 divise 24 mais pas 42, 9 ne divise aucun des deux, ...
Cette réponse est verifiée par des experts
Donc les diviseurs communs à 24 et 42 sont 1, 2, 3 et 6.
2. Calculer le PGCD de 36 et 60 à l'aide de l'algorithme des différences. Donc le PGCD de 60 et 36 est un diviseur de 24.
Exemples. Trouver le PGCD de 28 et 42 : 1. Dresser la liste des diviseurs de chacun des nombres.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
Trouver les multiples d'un nombre
La technique pour trouver des multiples repose sur une propriété mathématique: Si la multiplication de A par B est égale à C, alors C est un multiple de A et B (A, B et C sont des nombres entiers). La multiplication de 4 par 7 est égale à 28, donc 28 est un multiple de 4 et 7.
Les facteurs communs de 36,48 sont 1,2,3,4,6,12 1 , 2 , 3 , 4 , 6 , 12 . Le PGCD des facteurs numériques 1,2,3,4,6,12 1 , 2 , 3 , 4 , 6 , 12 est 12 .
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5. Pour trouver le PGCD de 3 entiers, On cherche le PGCD de 2 d'entre eux, que l'on note D.
Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12. Le PPCM est le produit du PGCD par le reste des facteurs non communs (en noir) donc 12 x 3 x 7 = 252. 2) Nombres premiers entre eux : Ce sont des nombres qui ont un et un seul diviseur commun : 1.
✓ Cherchons tous les autres diviseurs communs de 36 et 54. Les diviseurs de 36 sont : Les diviseurs de 54 sont : Donc les diviseurs communs à 36 et 54 sont : 1 ; 2 ; 3 ; 6 ; 9 et 18. ✓ Le PGCD de 36 et 54 est donc 18.
Le plus petit commun multiple (PPCM) est également connu sous le nom de plus petit diviseur commun. Le PPCM est le plus petit entier positif qui est également divisible par a et b pour deux entiers, abrégé PPCM (a,b). PPCM(2,3), par exemple, est égal à 6 et PPCM(6,10), est égal à 30.