Un nombre premier a seulement deux diviseurs. 14 est le plus grand diviseur de 28. 1 est un nombre premier. Il existe des nombres qui ne possèdent aucun diviseur.
28 est dans la table de multiplication de 1, 2, 4, 7, 14 et 28. Les diviseurs de 28 sont donc 1, 2, 4, 7, 14 et 28.
On remarque que 1 est le plus grand diviseur commun.
Exemples. Trouver le PGCD de 28 et 42 : 1.
Pour trouver le plus grand commun diviseur de plusieurs nombres, on vérifie si chacun des nombres est divisible par un nombre premier comme 2, 3, 5, 7, 11, etc. On note les diviseurs communs. À la fin, on multiplie ces diviseurs : c'est le plus grand commun diviseur.
Les diviseurs de 78 sont : 1 ; 2 ; 3 ; 6 ; 13 ; 26; 39 ; 78. Ceux de 208 sont : 1 ; 2 ; 4 ; 8 ; 13 ; 26; 52 ; 104 ; 208. 1 ; 2 ; 13 et 26 sont les diviseurs communs de 78 et 208. Le plus grand de ces diviseurs communs est 26 : 26 est le plus grand commun diviseur de 78 et de 208.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 . Le PGCD de 48 et 72 est donc : 24 .
Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
6 et 3 sont des diviseurs de 18. Remarque 1 : 1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples.
Les diviseurs de 30 sont 1, 2, 3, 5, 6, 10, 15 et 30. Donc les diviseurs communs à 2730 et 5610 sont 1, 2, 3, 5, 6, 10, 15 et 30. Propriété : Soit a, b et k des entiers naturels non nuls. Définition : Soit a et b deux entiers naturels non nuls.
Un diviseur d'un nombre est un nombre entier qui divise ce nombre sans qu'il n'y ait de reste. En d'autres mots, un nombre entier est un diviseur d'un autre nombre si le quotient est un nombre entier.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
28 est également un nombre parfait : 1+2+4+7+14=28. Les nombres parfaits sont rares, il n'en existe que trois inférieurs à 1000 qui sont 6, 28 et 496.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Un nombre composé est un nombre plus grand que 1 qui n'est pas premier : il possède au moins un autre diviseur. Les nombres composés sont 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, .... Par exemple, dans cette liste, on trouve le nombre 12 car 12 ne se divise pas seulement que par 1 et 12.
Pour trouver les diviseurs communs à 15 et 20, il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5.
36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
Liste des diviseurs de 16 : 1, 2, 4, 8, 16 Liste des diviseurs de 9 : 1, 3, 9 Comme 1 est leur seul diviseur commun, alors 16 et 9 sont premiers entre eux.
Le plus petit commun multiple (PPCM) est également connu sous le nom de plus petit diviseur commun. Le PPCM est le plus petit entier positif qui est également divisible par a et b pour deux entiers, abrégé PPCM (a,b). PPCM(2,3), par exemple, est égal à 6 et PPCM(6,10), est égal à 30.
Le plus petit diviseur premier de 25 est 5. Le plus petit diviseur premier de 51 est 3.
Diviseurs de 54 = 1 ; 2 ; 3 ; 6 ; 9 ; 18 ; 27 et 54.
Exercice 1 : Diviseurs
2. Les deux plus petits diviseurs de 45 sont 1 et 3 car tous les diviseurs de 45 sont 1, 3, 5, 9, 15 et 45.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42.