PPCM(2,3), par exemple, est égal à 6 et PPCM(6,10), est égal à 30. Le plus petit multiple commun (PPCM) de deux nombres ou plus est le plus petit nombre également divisible par tous les nombres de l'ensemble.
On peut commencer par calculer le pgcd de 72 et 132. On trouve : pgcd(72, 132) = 12. Donc: ppcm(72, 132) = (72 * 132) / 12 = 792.
Les multiples de 2 sont tous des nombres pairs. Ex. : 12, 186, 2 474, 751 200, etc. Les multiples de 5 se terminent tous par 0 ou 5. Ex. : 15, 980, 52 135, 912 680, etc.
Les multiples de 3 sont: 6, 9, 12, 15, 18, 21, 24, 27, 30 … Les multiples de 37 sont: 74, 111, 148, 185, 222 … 63 est un multiple commun à 3 et à 7 car 63 = 21 fois 3 et 63 = 9 fois 7.
Le plus petit multiple commun de 3,5,7 3 , 5 , 7 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 3⋅5⋅7 3 ⋅ 5 ⋅ 7 . Multipliez 3 3 par 5 5 . Multipliez 15 15 par 7 7 .
L'ensemble des multiples d'un nombre est le résultat de la multiplication de ce nombre par chacun des nombres entiers (Z ). 12 est un multiple de 3 , car 3×4=12 3 × 4 = 12 . L'ensemble des multiples de 3 est obtenu en multipliant 3 par chacun des éléments de Z . {…,-12,-9,-6,-3,0,3,6,9,12,…}
Quels sont les multiples de 3 ? Les multiples de 3 évidents sont : 0, 3, 6, 9. Pour les nombres à 2 ou 3 chiffres (ou plus), il faut utiliser la règle énoncée ci-dessus ; autrement dit additionner les chiffres composant le nombre.
Zéro est le seul nombre entier qui ne possède qu'un seul multiple: lui-même (0). Zéro possède un seul multiple, mais il est le multiple de tous les nombres entiers. Tous les nombres entiers sont dans la table de multiplication de 1, donc tous les nombres sont des multiples de 1.
Calculer le PPCM
Le plus petit commun multiple de 2, 3, 4, 5 et 6 est 60.
Exemple : Quelle est le PPCM de 6 et 21 ? Multiples de 6 = 6, 12, 18, 24, 30, 36, 42...
4 4 a des facteurs de 2 2 et 2 2 . Le plus petit multiple commun de 6,8 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 2⋅2⋅2⋅3 2 ⋅ 2 ⋅ 2 ⋅ 3 .
- Les multiples de 2 sont les nombres pairs. Autrement dit, ceux qui se terminent par « 0, 2, 4, 6 ou 8 ». Exemples : 22, 234, 78, 110 sont des multiples de 2.
ex : 0, 2, 4, 6, 8 sont des multiples de 2 car 0 = 2 x 0 / 2 = 2 x 1 / 4 = 2 x 2 / 6 = 2 x 3 / 8 = 2 x 4 Attention : Un multiple de 2 se finit toujours par 0, 2, 4, 6 ou 8.
Pour savoir si un nombre est multiple de 2, ou de 5, ou de 15, etc. il suffit de faire la division de ce nombre par 2, ou par 5, ou par 15, etc. Si le quotient est exact et le reste nul, alors il est bien un multiple.
Les multiples de 2 sont 0, 2, 4, 6, 8, ... Les multiples de 3 sont 0, 3, 6, 9, 12, ... Les multiples de 4 sont 0, 4, 8, 12, 16, ...
Le PPCM est donné par le rapport du produit des 2 entiers donnés et de leur PGCD. On obtient la formule suivante PPCM (a,b) = a × b ÷ PGCD (a,b). Vous pouvez rechercher le PPCM d'entiers jusqu'à 20 chiffres.
Les puissances de 2 sont les seuls nombres qui ne sont pas divisibles par un nombre impair autre que 1. Les chiffres des unités des puissances successives de 2 forment une suite périodique (2, 4, 8 et 6). Chaque puissance de 2 est une somme de coefficients binomiaux : Le nombre réel 0,12481632641282565121024…
485 est un nombre impair, puisqu'il n'est pas divisible par 2.
33 est multiple de 3. 33 est multiple de 11.
Le PPCM de 7 et 12 est 84. Le PPCM de 10 et 20 est 20. Le PPCM de 9 et 15 est 45.
Si PGCD(8, 12) = 4 et PPCM(8, 12) = 24, alors : 4 × 24 = 8 × 12. Par extension, on peut trouver le PPCM de deux ou plusieurs polynômes.
Diviser un nombre par 4 c'est calculer son quart. Les multiples de 4 sont tous les nombres présents dans la table de 4 : 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52 … sont des multiples de 4.