En mathématiques, l'ensemble de définition Df d'une fonction f dont l'ensemble de départ est noté E et l'ensemble d'arrivée F est l'ensemble des éléments de E qui possèdent une image dans F par f, autrement dit l'ensemble des éléments x de E pour lesquels f(x) existe : On dit de f qu'elle est « définie sur Df ».
L'ensemble des nombres réels possédant une image par une fonction f est appelé ensemble de définition de la fonction f . De façon formelle, soit f une fonction à valeurs réelles, l'ensemble de définition de f est l'ensemble des réels x pour lesquels l'image f ( x ) existe ou pour lesquels f ( x ) a un sens.
L'ensemble de définition d'une fonction est l'ensemble des éléments de son ensemble de départ qui ont une image par cette fonction. Par exemple, celui de la fonction f : x↦x² est ℝ et celui de la fonction g : x↦1/x est l'ensemble des réels privé de 0.
Par exemple, ℝ* est l'ensemble des nombres réels privé de 0. Tous les nombres de l'ensemble des entiers naturels ℕ appartiennent à l'ensemble des entiers relatifs ℤ.
L'ensemble Z vient de l'allemand zahlen qui signifie compter. Ainsi défini par Dedekind, il recouvre l'ensemble des nombres entiers relatifs (exemples : -3 -1 0 1 5). N est inclus dans Z.
Le symbole Q désigne l'ensemble des nombres rationnels. Tous les nombres naturels, entiers et décimaux sont des nombres rationnels.
La fonction (g∘f) ( g ∘ f ) est appelée la composée de g par f . On lit cette composée g rond f . On peut également avoir (f∘g)(x)=f(g(x)) ( f ∘ g ) ( x ) = f ( g ( x ) ) qui est la composée de f par g .
Déterminer l'ensemble de définition à partir de l'expression de f ( x ) f(x) f(x) Si on donne l'expression d'une fonction f, par exemple f ( x ) = x 2 + 3 x f(x)=x^2+3x f(x)=x2+3x, l'ensemble de définition a priori sera l'ensemble de tous les réels de −∞ jusqu'à +∞.
1) Sens de variation :
a) Fonction croissante sur un intervalle : Une fonction f est dite croissante sur un intervalle I si , lorsque les valeurs de la variable x augmentent alors les valeurs des images f(x) augmentent aussi. Pour tout x1 et x2 de l'intervalle I , si x1 x2 alors f(x1) f(x2).
L'image d'une fonction f correspond à l'ensemble des valeurs que peut prendre la variable dépendante, généralement y. Par abus de langage, il est possible de confondre le concept d'image et de codomaine en prétendant que ce sont des synonymes.
R permet à l'utilisateur d'écrire ses propres fonctions. expression est une expression R, (habituellement une expression regroupée), qui utilise les arguments, arg_i, pour calculer une valeur. La valeur de l'expression est la valeur retournée par la fonction.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Normalement, pour avoir un couple-solution il te faut 2 fonctions. Prenons par exemple f(x)= 2x + 5 et g(x) = 3x. Trouver le couple-solution, revient à trouver le point d'intersection de ces 2 droites. Pour ce faire, on pose f(x)=g(x) puis on résout.
Restrictions pour déterminer le domaine d'une fonction algébrique : Si la formule contient un dénominateur, celui-ci ne doit pas être nul. Ainsi, si f est une fraction algébrique P(x)Q(x), alors domf={x∈R|Q(x)≠0}. Si f contient une racine paire n√H(x), alors l'intérieur de la racine, H(x), doit être non-négatif.
On place les valeurs pour lesquelles f change de sens de variation dans la première ligne du tableau de variations. On trace une flèche qui monte dans la deuxième ligne du tableau lorsque f est croissante et une flèche qui descend lorsque f est décroissante.
Si g vérifie gof = fog pour toute application f de vers , alors on a c = g(c) . Si g vérifie gof = fog pour toute application f constante de vers , alors on a c = g(c) .
Si f et g sont deux fonctions dérivables, alors f + g est aussi dérivable et sa dérivée est la somme de celle de f et de celle de g. Plus généralement, si f et g sont deux fonctions dérivables sur une partie I de R, alors f + g est aussi dérivable sur I et, sur I, sa dérivée est la somme de celle de f et de celle de g.
La fonction OU est couramment utilisée pour développer l'utilité d'autres fonctions qui effectuent des tests logiques. Par exemple, la fonction SI effectue un test logique, puis renvoie une valeur si le résultat du test est VRAI, et une autre valeur si le résultat du test est FAUX.
Z est l'ensemble des nombres entiers relatifs, c'est à dire positifs, négatifs ou nuls. Z∗ (Z étoile) est l' ensemble des entiers relatifs sauf 0 (zéro).
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble.
ℝ est le plus grand corps totalement ordonné archimédien. ℝ est l'unique corps totalement ordonné archimédien et complet. ℝ est l'unique corps totalement ordonné vérifiant la propriété de la borne supérieure. ℝ est l'unique corps totalement ordonné connexe (pour la topologie de l'ordre).